

WESTPA 2.0

[image: GitHub Actions] [https://github.com/westpa/westpa/actions/workflows/test.yaml] [image: Anaconda] [https://anaconda.org/conda-forge/westpa] [image: WESTPA Tutorials GitHub] [https://github.com/westpa/tutorials]

[image: Documentation Status] [https://westpa.readthedocs.io/en/latest/?badge=latest] [image: Users Google Group] [http://groups.google.com/group/westpa-users] [image: Developers Google Group] [https://groups.google.com/g/westpa-devel]

Overview

WESTPA is a package for constructing and running stochastic simulations using the “weighted ensemble” approach
of Huber and Kim (1996). For use of WESTPA please cite the following:

Zwier, M.C., Adelman, J.L., Kaus, J.W., Pratt, A.J., Wong, K.F., Rego, N.B., Suarez, E., Lettieri, S.,
Wang, D.W., Grabe, M., Zuckerman, D.M., and Chong, L.T. “WESTPA: An Interoperable, Highly
Scalable Software Package For Weighted Ensemble Simulation and Analysis,” J. Chem. Theory Comput., 11: 800−809 (2015).

Russo, J. D., Zhang, S., Leung, J.M.G., Bogetti, A.T., Thompson, J.P., DeGrave, A.J., Torrillo, P.A., Pratt, A.J.,
Wong, K.F., Xia, J., Copperman, J., Adelman, J.L., Zwier, M.C., LeBard, D.N., Zuckerman, D.M., Chong, L.T.
WESTPA 2.0: High-Performance Upgrades for Weighted Ensemble Simulations and Analysis of Longer-Timescale Applications.
J. Chem. Theory Comput., 18 (2): 638–649 (2022).

See this page [https://westpa.github.io/westpa/overview.html] and this powerpoint [https://docs.google.com/presentation/d/1PKsklN5aYLlLSTDOLdNGti6pcGs4Rgxm/edit?usp=sharing&ouid=117278498028744119802&rtpof=true&sd=true] for an overview of weighted ensemble simulation.

To help us fund development and improve WESTPA please fill out a one-minute survey [https://docs.google.com/forms/d/e/1FAIpQLSfWaB2aryInU06cXrCyAFmhD_gPibgOfFk-dspLEsXuS9-RGQ/viewform] and consider
contributing documentation or code to the WESTPA community.

WESTPA is free software, licensed under the terms of the MIT License. See the file LICENSE for more information.

Requirements

WESTPA is written in Python and requires version 3.7 or later. WESTPA also requires a number of Python scientific software packages.
The simplest way to meet these requirements is to download the
Anaconda Python distribution from www.anaconda.com (free for all users).

WESTPA currently runs on Unix-like operating systems, including Linux and
Mac OS X. It is developed and tested on x86_64 machines running Linux.

Obtaining and Installing WESTPA

WESTPA is developed and tested on Unix-like operating systems, including Linux and Mac OS X.

Regardless of the chosen method of installation, before installing WESTPA, we recommend you to first install the Python 3 version provided by the latest free Anaconda Python distribution [https://www.anaconda.com/products/individual]. After installing Anaconda, create a new python environment for the WESTPA install with the following:

conda create -n westpa-2.0 python=3.9
conda activate westpa-2.0

Then, we recommend installing WESTPA through conda or pip. Execute either of the following:

conda install -c conda-forge westpa

or:

python -m pip install westpa

See the install instructions on our wiki [https://github.com/westpa/westpa/wiki/Installing-WESTPA] for more detailed information.

To install from source (not recommended), start by downloading the corresponding tar.gz file from the releases page [https://github.com/westpa/westpa/releases]. After downloading the file, unpack the file and install WESTPA by executing the following:

tar xvzf westpa-main.tar.gz
cd westpa
python -m pip install -e .

Getting started

High-level tutorials of how to use the WESTPA software can be found here [https://github.com/westpa/westpa/wiki/Tutorials].
Further, all WESTPA command-line tools provide detailed help when
given the -h/–help option.

Finally, while WESTPA is a powerful tool that enables expert simulators to access much longer
timescales than is practical with standard simulations, there can be a steep learning curve to
figuring out how to effectively run the simulations on your computing resource of choice.
For serious users who have completed the online tutorials and are ready for production simulations
of their system, we invite you to contact Lillian Chong (ltchong AT pitt DOT edu) about spending
a few days with her lab and/or setting up video conferencing sessions to help you get your
simulations off the ground.

Getting help

WESTPA FAQ [https://github.com/westpa/westpa/wiki/Frequently-Asked-Questions]

A mailing list for WESTPA is available, at which one can ask questions (or see
if a question one has was previously addressed). This is the preferred means
for obtaining help and support. See http://groups.google.com/group/westpa-users
to sign up or search archived messages.

Developers

Search archived messages or post to the westpa-devel Google group: https://groups.google.com/group/westpa-devel.

westpa.cli package

Setting up and running a simulation:

	 w_init

	 w_bins

	 w_run

	 w_truncate

	 w_fork

Analyzing a simulation:

	 w_assign

	 w_trace

	 w_ipa

	 w_pdist

	 w_succ

	 w_crawl

	 w_direct

	 w_select

	 w_states

	 w_eddist

	 w_ntop

	 w_multi_west

	 w_red

Plotting tools:

	 plothist

	 ploterr

Deprecated tools:

	 Deprecated Tools
	 w_kinavg

	 w_kinetics

	 w_stateprobs

	 w_dumpsegs

	 w_postanalysis_matrix

	 w_postanalysis_reweight

	 w_reweight

	 w_fluxanl

w_init

w_init initializes the weighted ensemble simulation, creates the
main HDF5 file and prepares the first iteration.

Overview

Usage:

w_init [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--force] [--bstate-file BSTATE_FILE] [--bstate BSTATES]
 [--tstate-file TSTATE_FILE] [--tstate TSTATES]
 [--segs-per-state N] [--no-we] [--wm-work-manager WORK_MANAGER]
 [--wm-n-workers N_WORKERS] [--wm-zmq-mode MODE]
 [--wm-zmq-info INFO_FILE] [--wm-zmq-task-endpoint TASK_ENDPOINT]
 [--wm-zmq-result-endpoint RESULT_ENDPOINT]
 [--wm-zmq-announce-endpoint ANNOUNCE_ENDPOINT]
 [--wm-zmq-heartbeat-interval INTERVAL]
 [--wm-zmq-task-timeout TIMEOUT] [--wm-zmq-client-comm-mode MODE]

Initialize a new WEST simulation, creating the WEST HDF5 file and preparing the
first iteration’s segments. Initial states are generated from one or more
“basis states” which are specified either in a file specified with
--bstates-from, or by one or more --bstate arguments. If neither
--bstates-from nor at least one --bstate argument is provided, then a
default basis state of probability one identified by the state ID zero and
label “basis” will be created (a warning will be printed in this case, to
remind you of this behavior, in case it is not what you wanted). Target states
for (non- equilibrium) steady-state simulations are specified either in a file
specified with --tstates-from, or by one or more --tstate arguments. If
neither --tstates-from nor at least one --tstate argument is provided,
then an equilibrium simulation (without any sinks) will be performed.

Command-Line Options

See the general command-line tool reference for more
information on the general options.

State Options

--force
 Overwrites any existing simulation data

--bstate BSTATES
 Add the given basis state (specified as a string
 'label,probability[,auxref]') to the list of basis states (after
 those specified in --bstates-from, if any). This argument may be
 specified more than once, in which case the given states are
 appended in the order they are given on the command line.

--bstate-file BSTATE_FILE, --bstates-from BSTATE_FILE
 Read basis state names, probabilities, and (optionally) data
 references from BSTATE_FILE.

--tstate TSTATES
 Add the given target state (specified as a string
 'label,pcoord0[,pcoord1[,...]]') to the list of target states (after
 those specified in the file given by --tstates-from, if any). This
 argument may be specified more than once, in which case the given
 states are appended in the order they appear on the command line.

--tstate-file TSTATE_FILE, --tstates-from TSTATE_FILE
 Read target state names and representative progress coordinates from
 TSTATE_FILE. WESTPA uses the representative progress coordinate of a target state and
 converts the **entire** bin containing that progress coordinate into a
 recycling sink.

--segs-per-state N
 Initialize N segments from each basis state (default: 1).

--no-we, --shotgun
 Do not run the weighted ensemble bin/split/merge algorithm on
 newly-created segments.

Examples

(TODO: write 3 examples; Setting up the basis states, explanation of
bstates and istates. Setting up an equilibrium simulation, w/o target(s)
for recycling. Setting up a simulation with one/multiple target states.)

westpa.cli.core.w_init module

	
class westpa.cli.core.w_init.BasisState(label, probability, pcoord=None, auxref=None, state_id=None)

	Bases: object

Describes an basis (micro)state. These basis states are used to generate
initial states for new trajectories, either at the beginning of the simulation
(i.e. at w_init) or due to recycling.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	probability – Probability of this state to be selected when creating a
new trajectory.

	pcoord – The representative progress coordinate of this state.

	auxref – A user-provided (string) reference for locating data associated
with this state (usually a filesystem path).

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile)

	Read a file defining basis states. Each line defines a state, and contains a label, the probability,
and optionally a data reference, separated by whitespace, as in:

unbound 1.0

or:

unbound_0 0.6 state0.pdb
unbound_1 0.4 state1.pdb

	
as_numpy_record()

	Return the data for this state as a numpy record array.

	
class westpa.cli.core.w_init.TargetState(label, pcoord, state_id=None)

	Bases: object

Describes a target state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	pcoord – The representative progress coordinate of this state.

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile, dtype)

	Read a file defining target states. Each line defines a state, and contains a label followed
by a representative progress coordinate value, separated by whitespace, as in:

bound 0.02

for a single target and one-dimensional progress coordinates or:

bound 2.7 0.0
drift 100 50.0

for two targets and a two-dimensional progress coordinate.

	
westpa.cli.core.w_init.make_work_manager()

	Using cues from the environment, instantiate a pre-configured work manager.

	
westpa.cli.core.w_init.entry_point()

	

	
westpa.cli.core.w_init.initialize(tstates, tstate_file, bstates, bstate_file, sstates=None, sstate_file=None, segs_per_state=1, shotgun=False)

	Initialize a WESTPA simulation.

tstates : list of str

tstate_file : str

bstates : list of str

bstate_file : str

sstates : list of str

sstate_file : str

segs_per_state : int

shotgun : bool

w_bins

w_bins deals with binning modification and statistics

Overview

Usage:

w_bins [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [-W WEST_H5FILE]
 {info,rebin} ...

Display information and statistics about binning in a WEST simulation, or
modify the binning for the current iteration of a WEST simulation.

Command-Line Options

See the general command-line tool reference for
more information on the general options.

Options Under ‘info’

Usage:

w_bins info [-h] [-n N_ITER] [--detail]
 [--bins-from-system | --bins-from-expr BINS_FROM_EXPR | --bins-from-function BINS_FROM_FUNCTION | --bins-from-file]

Positional options:

info
 Display information about binning.

Options for ‘info’:

-n N_ITER, --n-iter N_ITER
 Consider initial points of segment N_ITER (default: current
 iteration).

--detail
 Display detailed per-bin information in addition to summary
 information.

Binning options for ‘info’:

--bins-from-system
 Bins are constructed by the system driver specified in the WEST
 configuration file (default where stored bin definitions not
 available).

--bins-from-expr BINS_FROM_EXPR, --binbounds BINS_FROM_EXPR
 Construct bins on a rectilinear grid according to the given BINEXPR.
 This must be a list of lists of bin boundaries (one list of bin
 boundaries for each dimension of the progress coordinate), formatted
 as a Python expression. E.g. "[[0,1,2,4,inf],[-inf,0,inf]]". The
 numpy module and the special symbol "inf" (for floating-point
 infinity) are available for use within BINEXPR.

--bins-from-function BINS_FROM_FUNCTION, --binfunc BINS_FROM_FUNCTION
 Supply an external function which, when called, returns a properly
 constructed bin mapper which will then be used for bin assignments.
 This should be formatted as "[PATH:]MODULE.FUNC", where the function
 FUNC in module MODULE will be used; the optional PATH will be
 prepended to the module search path when loading MODULE.

--bins-from-file
 Load bin specification from the data file being examined (default
 where stored bin definitions available).

Options Under ‘rebin’

Usage:

w_bins rebin [-h] [--confirm] [--detail]
 [--bins-from-system | --bins-from-expr BINS_FROM_EXPR | --bins-from-function BINS_FROM_FUNCTION]
 [--target-counts TARGET_COUNTS | --target-counts-from FILENAME]

Positional option:

rebin
 Rebuild current iteration with new binning.

Options for ‘rebin’:

--confirm
 Commit the revised iteration to HDF5; without this option, the
 effects of the new binning are only calculated and printed.

--detail
 Display detailed per-bin information in addition to summary
 information.

Binning options for ‘rebin’;

Same as the binning options for ‘info’.

Bin target count options for ‘rebin’;:

--target-counts TARGET_COUNTS
 Use TARGET_COUNTS instead of stored or system driver target counts.
 TARGET_COUNTS is a comma-separated list of integers. As a special
 case, a single integer is acceptable, in which case the same target
 count is used for all bins.

--target-counts-from FILENAME
 Read target counts from the text file FILENAME instead of using
 stored or system driver target counts. FILENAME must contain a list
 of integers, separated by arbitrary whitespace (including newlines).

Input Options

-W WEST_H5FILE, --west_data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file
 specified in west.cfg).

Examples

(TODO: Write up an example)

westpa.cli.tools.w_bins module

	
class westpa.cli.tools.w_bins.WESTTool

	Bases: WESTToolComponent

Base class for WEST command line tools

	
prog = None

	

	
usage = None

	

	
description = None

	

	
epilog = None

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
make_parser(prog=None, usage=None, description=None, epilog=None, args=None)

	

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then call self.go()

	
class westpa.cli.tools.w_bins.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_bins.BinMappingComponent

	Bases: WESTToolComponent

Component for obtaining a bin mapper from one of several places based on
command-line arguments. Such locations include an HDF5 file that contains
pickled mappers (including the primary WEST HDF5 file), the system object,
an external function, or (in the common case of rectilinear bins) a
list of lists of bin boundaries.

Some configuration is necessary prior to calling process_args() if loading a
mapper from HDF5. Specifically, either set_we_h5file_info() or
set_other_h5file_info() must be called to describe where to find the
appropriate mapper. In the case of set_we_h5file_info(), the mapper used for
WE at the end of a given iteration will be loaded. In the case of
set_other_h5file_info(), an arbitrary group and hash value are specified;
the mapper corresponding to that hash in the given group will be returned.

In the absence of arguments, the mapper contained in an existing HDF5 file
is preferred; if that is not available, the mapper from the system driver
is used.

This component adds the following arguments to argument parsers:

	--bins-from-system

	Obtain bins from the system driver

—bins-from-expr=EXPR
Construct rectilinear bins by parsing EXPR and calling
RectilinearBinMapper() with the result. EXPR must therefore be a list of
lists.

	–bins-from-function=[PATH:]MODULE.FUNC
	Call an external function FUNC in module MODULE (optionally adding PATH
to the search path when loading MODULE) which, when called, returns a
fully-constructed bin mapper.

—bins-from-file
Load bin definitions from a YAML configuration file.

	--bins-from-h5file

	Load bins from the file being considered; this is intended to mean the
master WEST HDF5 file or results of other binning calculations, as
appropriate.

	
add_args(parser, description='binning options', suppress=[])

	Add arguments specific to this component to the given argparse parser.

	
add_target_count_args(parser, description='bin target count options')

	Add options to the given parser corresponding to target counts.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
set_we_h5file_info(n_iter=None, data_manager=None, required=False)

	Set up to load a bin mapper from the master WEST HDF5 file. The mapper is actually loaded
from the file when self.load_bin_mapper() is called, if and only if command line arguments
direct this. If required is true, then a mapper must be available at iteration n_iter,
or else an exception will be raised.

	
set_other_h5file_info(topology_group, hashval)

	Set up to load a bin mapper from (any) open HDF5 file, where bin topologies are
stored in topology_group (an h5py Group object) and the desired mapper has hash
value hashval. The mapper itself is loaded when self.load_bin_mapper() is called.

	
westpa.cli.tools.w_bins.write_bin_info(mapper, assignments, weights, n_target_states, outfile=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, detailed=False)

	Write information about binning to outfile, given a mapper (mapper) and the weights
(weights) and bin assignments (assignments) of a set of segments, along with a target state
count (n_target_states). If detailed is true, then per-bin information is written as well as
summary information about all bins.

	
class westpa.cli.tools.w_bins.WBinTool

	Bases: WESTTool

	
prog = 'w_bins'

	

	
description = 'Display information and statistics about binning in a WEST simulation, or\nmodify the binning for the current iteration of a WEST simulation.\n---\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
cmd_info()

	

	
cmd_rebin()

	

	
westpa.cli.tools.w_bins.entry_point()

	

w_run

w_run starts or continues a weighted ensemble simualtion.

Overview

Usage:

w_run [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--oneseg] [--wm-work-manager WORK_MANAGER]
 [--wm-n-workers N_WORKERS] [--wm-zmq-mode MODE]
 [--wm-zmq-info INFO_FILE] [--wm-zmq-task-endpoint TASK_ENDPOINT]
 [--wm-zmq-result-endpoint RESULT_ENDPOINT]
 [--wm-zmq-announce-endpoint ANNOUNCE_ENDPOINT]
 [--wm-zmq-heartbeat-interval INTERVAL]
 [--wm-zmq-task-timeout TIMEOUT] [--wm-zmq-client-comm-mode MODE]

Command-Line Options

See the command-line tool index for
more information on the general options.

Segment Options

	::
	
	--oneseg

	Only propagate one segment (useful for debugging propagators)

Example

A simple example for using w_run (mostly taken from odld example that
is available in the main WESTPA distribution):

w_run &> west.log

This commands starts up a serial weighted ensemble run and pipes the results
into the west.log file. As a side note --debug option is very useful for
debugging the code if something goes wrong.

westpa.cli.core.w_run module

	
westpa.cli.core.w_run.make_work_manager()

	Using cues from the environment, instantiate a pre-configured work manager.

	
westpa.cli.core.w_run.entry_point()

	

	
westpa.cli.core.w_run.run_simulation()

	

w_truncate

w_truncate removes all iterations after a certain point

Overview

Usage:

w_truncate [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [-n N_ITER] [-W WEST_H5FILE]

Remove all iterations after a certain point in a

Command-Line Options

See the command-line tool index <command_line_tool_index> for more
information on the general options.

Iteration Options

-n N_ITER, --iter N_ITER
 Truncate this iteration and those following.

-W WEST_H5FILE, --west-data WEST_H5FILE
 PATH of H5 file to truncate. By default, it will read from the RCFILE (e.g., west.cfg).
 This option will have override whatever's provided in the RCFILE.

Examples

Running the following will remove iteration 50 and all iterations after 50 from multi.h5.

w_truncate -n 50 -W multi.h5

westpa.cli.core.w_truncate module

	
westpa.cli.core.w_truncate.entry_point()

	

w_fork

usage:

w_fork [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-i INPUT_H5FILE]
 [-I N_ITER] [-o OUTPUT_H5FILE] [--istate-map ISTATE_MAP] [--no-headers]

Prepare a new weighted ensemble simulation from an existing one at a particular point. A new HDF5 file
is generated. In the case of executable propagation, it is the user’s responsibility to prepare the new
simulation directory appropriately, particularly making the old simulation’s restart data from the
appropriate iteration available as the new simulations initial state data; a mapping of old simulation
segment to new simulation initial states is created, both in the new HDF5 file and as a flat text file,
to aid in this. Target states and basis states for the new simulation are taken from those in the
original simulation.

optional arguments:

-h, --help show this help message and exit
-i INPUT_H5FILE, --input INPUT_H5FILE
 Create simulation from the given INPUT_H5FILE (default: read from configuration
 file.
-I N_ITER, --iteration N_ITER
 Take initial distribution for new simulation from iteration N_ITER (default:
 last complete iteration).
-o OUTPUT_H5FILE, --output OUTPUT_H5FILE
 Save new simulation HDF5 file as OUTPUT (default: forked.h5).
--istate-map ISTATE_MAP
 Write text file describing mapping of existing segments to new initial states
 in ISTATE_MAP (default: istate_map.txt).
--no-headers Do not write header to ISTATE_MAP

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

westpa.cli.tools.w_fork module

	
class westpa.cli.core.w_fork.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.cli.core.w_fork.InitialState(state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None, basis_auxref=None)

	Bases: object

Describes an initial state for a new trajectory. These are generally constructed by
appropriate modification of a basis state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	basis_state_id – Identifier of the basis state from which this state was
generated, or None.

	basis_state – The BasisState from which this state was generated, or None.

	iter_created – Iteration in which this state was generated (0 for
simulation initialization).

	iter_used – Iteration in which this state was used to initiate a
trajectory (None for unused).

	istate_type – Integer describing the type of this initial state
(ISTATE_TYPE_BASIS for direct use of a basis state,
ISTATE_TYPE_GENERATED for a state generated from a basis state,
ISTATE_TYPE_RESTART for a state corresponding to the endpoint
of a segment in another simulation, or
ISTATE_TYPE_START for a state generated from a start state).

	istate_status – Integer describing whether this initial state has been properly
prepared.

	pcoord – The representative progress coordinate of this state.

	
ISTATE_TYPE_UNSET = 0

	

	
ISTATE_TYPE_BASIS = 1

	

	
ISTATE_TYPE_GENERATED = 2

	

	
ISTATE_TYPE_RESTART = 3

	

	
ISTATE_TYPE_START = 4

	

	
ISTATE_UNUSED = 0

	

	
ISTATE_STATUS_PENDING = 0

	

	
ISTATE_STATUS_PREPARED = 1

	

	
ISTATE_STATUS_FAILED = 2

	

	
istate_types = {'ISTATE_TYPE_BASIS': 1, 'ISTATE_TYPE_GENERATED': 2, 'ISTATE_TYPE_RESTART': 3, 'ISTATE_TYPE_START': 4, 'ISTATE_TYPE_UNSET': 0}

	

	
istate_type_names = {0: 'ISTATE_TYPE_UNSET', 1: 'ISTATE_TYPE_BASIS', 2: 'ISTATE_TYPE_GENERATED', 3: 'ISTATE_TYPE_RESTART', 4: 'ISTATE_TYPE_START'}

	

	
istate_statuses = {'ISTATE_STATUS_FAILED': 2, 'ISTATE_STATUS_PENDING': 0, 'ISTATE_STATUS_PREPARED': 1}

	

	
istate_status_names = {0: 'ISTATE_STATUS_PENDING', 1: 'ISTATE_STATUS_PREPARED', 2: 'ISTATE_STATUS_FAILED'}

	

	
as_numpy_record()

	

	
westpa.cli.core.w_fork.n_iter_dtype

	alias of uint32

	
westpa.cli.core.w_fork.seg_id_dtype

	alias of int64

	
westpa.cli.core.w_fork.entry_point()

	

w_assign

w_assign uses simulation output to assign walkers to user-specified bins
and macrostates. These assignments are required for some other simulation
tools, namely w_kinetics and w_kinavg.

w_assign supports parallelization (see general work manager options for more on command line options
to specify a work manager).

Overview

Usage:

w_assign [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [-W WEST_H5FILE] [-o OUTPUT]
 [--bins-from-system | --bins-from-expr BINS_FROM_EXPR | --bins-from-function BINS_FROM_FUNCTION]
 [-p MODULE.FUNCTION]
 [--states STATEDEF [STATEDEF ...] | --states-from-file STATEFILE | --states-from-function STATEFUNC]
 [--wm-work-manager WORK_MANAGER] [--wm-n-workers N_WORKERS]
 [--wm-zmq-mode MODE] [--wm-zmq-info INFO_FILE]
 [--wm-zmq-task-endpoint TASK_ENDPOINT]
 [--wm-zmq-result-endpoint RESULT_ENDPOINT]
 [--wm-zmq-announce-endpoint ANNOUNCE_ENDPOINT]
 [--wm-zmq-listen-endpoint ANNOUNCE_ENDPOINT]
 [--wm-zmq-heartbeat-interval INTERVAL]
 [--wm-zmq-task-timeout TIMEOUT]
 [--wm-zmq-client-comm-mode MODE]

Command-Line Options

See the general command-line tool reference for
more information on the general options.

Input/output Options

-W, --west-data /path/to/file

 Read simulation result data from file *file*. (**Default:** The
 hdf5 file specified in the configuration file, by default
 west.h5)

-o, --output /path/to/file
 Write assignment results to file *outfile*. (**Default:** *hdf5*
 file **assign.h5**)

Binning Options

Specify how binning is to be assigned to the dataset.:

--bins-from-system
 Use binning scheme specified by the system driver; system driver can be
 found in the west configuration file, by default named **west.cfg**
 (**Default binning**)

--bins-from-expr bin_expr
 Use binning scheme specified in *``bin_expr``*, which takes the form a
 Python list of lists, where each inner list corresponds to the binning a
 given dimension. (for example, "[[0,1,2,4,inf],[-inf,0,inf]]" specifies bin
 boundaries for two dimensional progress coordinate. Note that this option
 accepts the special symbol 'inf' for floating point infinity

--bins-from-function bin_func
 Bins specified by calling an external function *``bin_func``*.
 ``bin_func`` should be formatted as '[PATH:]module.function', where the
 function 'function' in module 'module' will be used

Macrostate Options

You can optionally specify how to assign user-defined macrostates. Note
that macrostates must be assigned for subsequent analysis tools, namely
w_kinetics and w_kinavg.:

--states statedef [statedef ...]
 Specify a macrostate for a single bin as *``statedef``*, formatted
 as a coordinate tuple where each coordinate specifies the bin to
 which it belongs, for instance:
 '[1.0, 2.0]' assigns a macrostate corresponding to the bin that
 contains the (two-dimensional) progress coordinates 1.0 and 2.0.
 Note that a macrostate label can optionally by specified, for
 instance: 'bound:[1.0, 2.0]' assigns the corresponding bin
 containing the given coordinates the macrostate named 'bound'. Note
 that multiple assignments can be specified with this command, but
 only one macrostate per bin is possible - if you wish to specify
 multiple bins in a single macrostate, use the
 ``--states-from-file`` option.

--states-from-file statefile
 Read macrostate assignments from *yaml* file *``statefile``*. This
 option allows you to assign multiple bins to a single macrostate.
 The following example shows the contents of *``statefile``* that
 specify two macrostates, bound and unbound, over multiple bins with
 a two-dimensional progress coordinate:

states:
 - label: unbound
 coords:
 - [9.0, 1.0]
 - [9.0, 2.0]
 - label: bound
 coords:
 - [0.1, 0.0]

Specifying Progress Coordinate

By default, progress coordinate information for each iteration is taken from
pcoord dataset in the specified input file (which, by default is west.h5).
Optionally, you can specify a function to construct the progress coordinate for
each iteration - this may be useful to consolidate data from several sources or
otherwise preprocess the progress coordinate data.:

--construct-pcoord module.function, -p module.function
 Use the function *module.function* to construct the progress
 coordinate for each iteration. This will be called once per
 iteration as *function(n_iter, iter_group)* and should return an
 array indexable as [seg_id][timepoint][dimension]. The
 default function returns the 'pcoord' dataset for that iteration
 (i.e. the function executes return iter_group['pcoord'][...])

Examples

westpa.cli.tools.w_assign module

	
westpa.cli.tools.w_assign.seg_id_dtype

	alias of int64

	
westpa.cli.tools.w_assign.weight_dtype

	alias of float64

	
westpa.cli.tools.w_assign.index_dtype

	alias of uint16

	
westpa.cli.tools.w_assign.assign_and_label(nsegs_lb, nsegs_ub, parent_ids, assign, nstates, state_map, last_labels, pcoords, subsample)

	Assign trajectories to bins and last-visted macrostates for each timepoint.

	
westpa.cli.tools.w_assign.accumulate_labeled_populations(weights, bin_assignments, label_assignments, labeled_bin_pops)

	For a set of segments in one iteration, calculate the average population in each bin, with
separation by last-visited macrostate.

	
class westpa.cli.tools.w_assign.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_assign.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_assign.WESTDSSynthesizer(default_dsname=None, h5filename=None)

	Bases: WESTToolComponent

Tool for synthesizing a dataset for analysis from other datasets. This
may be done using a custom function, or a list of “data set specifications”.
It is anticipated that if several source datasets are required, then a tool
will have multiple instances of this class.

	
group_name = 'input dataset options'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.w_assign.BinMappingComponent

	Bases: WESTToolComponent

Component for obtaining a bin mapper from one of several places based on
command-line arguments. Such locations include an HDF5 file that contains
pickled mappers (including the primary WEST HDF5 file), the system object,
an external function, or (in the common case of rectilinear bins) a
list of lists of bin boundaries.

Some configuration is necessary prior to calling process_args() if loading a
mapper from HDF5. Specifically, either set_we_h5file_info() or
set_other_h5file_info() must be called to describe where to find the
appropriate mapper. In the case of set_we_h5file_info(), the mapper used for
WE at the end of a given iteration will be loaded. In the case of
set_other_h5file_info(), an arbitrary group and hash value are specified;
the mapper corresponding to that hash in the given group will be returned.

In the absence of arguments, the mapper contained in an existing HDF5 file
is preferred; if that is not available, the mapper from the system driver
is used.

This component adds the following arguments to argument parsers:

	--bins-from-system

	Obtain bins from the system driver

—bins-from-expr=EXPR
Construct rectilinear bins by parsing EXPR and calling
RectilinearBinMapper() with the result. EXPR must therefore be a list of
lists.

	–bins-from-function=[PATH:]MODULE.FUNC
	Call an external function FUNC in module MODULE (optionally adding PATH
to the search path when loading MODULE) which, when called, returns a
fully-constructed bin mapper.

—bins-from-file
Load bin definitions from a YAML configuration file.

	--bins-from-h5file

	Load bins from the file being considered; this is intended to mean the
master WEST HDF5 file or results of other binning calculations, as
appropriate.

	
add_args(parser, description='binning options', suppress=[])

	Add arguments specific to this component to the given argparse parser.

	
add_target_count_args(parser, description='bin target count options')

	Add options to the given parser corresponding to target counts.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
set_we_h5file_info(n_iter=None, data_manager=None, required=False)

	Set up to load a bin mapper from the master WEST HDF5 file. The mapper is actually loaded
from the file when self.load_bin_mapper() is called, if and only if command line arguments
direct this. If required is true, then a mapper must be available at iteration n_iter,
or else an exception will be raised.

	
set_other_h5file_info(topology_group, hashval)

	Set up to load a bin mapper from (any) open HDF5 file, where bin topologies are
stored in topology_group (an h5py Group object) and the desired mapper has hash
value hashval. The mapper itself is loaded when self.load_bin_mapper() is called.

	
class westpa.cli.tools.w_assign.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.w_assign.WESTPAH5File(*args, **kwargs)

	Bases: File

Generalized input/output for WESTPA simulation (or analysis) data.

Create a new file object.

See the h5py user guide for a detailed explanation of the options.

	name
	Name of the file on disk, or file-like object. Note: for files
created with the ‘core’ driver, HDF5 still requires this be
non-empty.

	mode
	r Readonly, file must exist (default)
r+ Read/write, file must exist
w Create file, truncate if exists
w- or x Create file, fail if exists
a Read/write if exists, create otherwise

	driver
	Name of the driver to use. Legal values are None (default,
recommended), ‘core’, ‘sec2’, ‘direct’, ‘stdio’, ‘mpio’, ‘ros3’.

	libver
	Library version bounds. Supported values: ‘earliest’, ‘v108’,
‘v110’, ‘v112’ and ‘latest’. The ‘v108’, ‘v110’ and ‘v112’
options can only be specified with the HDF5 1.10.2 library or later.

	userblock_size
	Desired size of user block. Only allowed when creating a new
file (mode w, w- or x).

	swmr
	Open the file in SWMR read mode. Only used when mode = ‘r’.

	rdcc_nbytes
	Total size of the dataset chunk cache in bytes. The default size
is 1024**2 (1 MiB) per dataset. Applies to all datasets unless individually changed.

	rdcc_w0
	The chunk preemption policy for all datasets. This must be
between 0 and 1 inclusive and indicates the weighting according to
which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0
means fully read or written chunks are treated no differently than
other chunks (the preemption is strictly LRU) while a value of 1
means fully read or written chunks are always preempted before
other chunks. If your application only reads or writes data once,
this can be safely set to 1. Otherwise, this should be set lower
depending on how often you re-read or re-write the same data. The
default value is 0.75. Applies to all datasets unless individually changed.

	rdcc_nslots
	The number of chunk slots in the raw data chunk cache for this
file. Increasing this value reduces the number of cache collisions,
but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of
thumb, this value should be at least 10 times the number of chunks
that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of
chunks. The default value is 521. Applies to all datasets unless individually changed.

	track_order
	Track dataset/group/attribute creation order under root group
if True. If None use global default h5.get_config().track_order.

	fs_strategy
	The file space handling strategy to be used. Only allowed when
creating a new file (mode w, w- or x). Defined as:
“fsm” FSM, Aggregators, VFD
“page” Paged FSM, VFD
“aggregate” Aggregators, VFD
“none” VFD
If None use HDF5 defaults.

	fs_page_size
	File space page size in bytes. Only used when fs_strategy=”page”. If
None use the HDF5 default (4096 bytes).

	fs_persist
	A boolean value to indicate whether free space should be persistent
or not. Only allowed when creating a new file. The default value
is False.

	fs_threshold
	The smallest free-space section size that the free space manager
will track. Only allowed when creating a new file. The default
value is 1.

	page_buf_size
	Page buffer size in bytes. Only allowed for HDF5 files created with
fs_strategy=”page”. Must be a power of two value and greater or
equal than the file space page size when creating the file. It is
not used by default.

	min_meta_keep
	Minimum percentage of metadata to keep in the page buffer before
allowing pages containing metadata to be evicted. Applicable only if
page_buf_size is set. Default value is zero.

	min_raw_keep
	Minimum percentage of raw data to keep in the page buffer before
allowing pages containing raw data to be evicted. Applicable only if
page_buf_size is set. Default value is zero.

	locking
	The file locking behavior. Defined as:

	False (or “false”) – Disable file locking

	True (or “true”) – Enable file locking

	“best-effort” – Enable file locking but ignore some errors

	None – Use HDF5 defaults

Warning

The HDF5_USE_FILE_LOCKING environment variable can override
this parameter.

Only available with HDF5 >= 1.12.1 or 1.10.x >= 1.10.7.

	alignment_threshold
	Together with alignment_interval, this property ensures that
any file object greater than or equal in size to the alignment
threshold (in bytes) will be aligned on an address which is a
multiple of alignment interval.

	alignment_interval
	This property should be used in conjunction with
alignment_threshold. See the description above. For more
details, see
https://portal.hdfgroup.org/display/HDF5/H5P_SET_ALIGNMENT

	meta_block_size
	Set the current minimum size, in bytes, of new metadata block allocations.
See https://portal.hdfgroup.org/display/HDF5/H5P_SET_META_BLOCK_SIZE

	Additional keywords
	Passed on to the selected file driver.

	
default_iter_prec = 8

	

	
replace_dataset(*args, **kwargs)

	

	
iter_object_name(n_iter, prefix='', suffix='')

	Return a properly-formatted per-iteration name for iteration
n_iter. (This is used in create/require/get_iter_group, but may
also be useful for naming datasets on a per-iteration basis.)

	
create_iter_group(n_iter, group=None)

	Create a per-iteration data storage group for iteration number n_iter
in the group group (which is ‘/iterations’ by default).

	
require_iter_group(n_iter, group=None)

	Ensure that a per-iteration data storage group for iteration number n_iter
is available in the group group (which is ‘/iterations’ by default).

	
get_iter_group(n_iter, group=None)

	Get the per-iteration data group for iteration number n_iter from within
the group group (‘/iterations’ by default).

	
westpa.cli.tools.w_assign.get_object(object_name, path=None)

	Attempt to load the given object, using additional path information if given.

	
westpa.cli.tools.w_assign.parse_pcoord_value(pc_str)

	

	
class westpa.cli.tools.w_assign.WAssign

	Bases: WESTParallelTool

	
prog = 'w_assign'

	

	
description = 'Assign walkers to bins, producing a file (by default named "assign.h5")\nwhich can be used in subsequent analysis.\n\nFor consistency in subsequent analysis operations, the entire dataset\nmust be assigned, even if only a subset of the data will be used. This\nensures that analyses that rely on tracing trajectories always know the\noriginating bin of each trajectory.\n\n\n---\nSource data\n---\n\nSource data is provided either by a user-specified function\n(--construct-dataset) or a list of "data set specifications" (--dsspecs).\nIf neither is provided, the progress coordinate dataset \'\'pcoord\'\' is used.\n\nTo use a custom function to extract or calculate data whose probability\ndistribution will be calculated, specify the function in standard Python\nMODULE.FUNCTION syntax as the argument to --construct-dataset. This function\nwill be called as function(n_iter,iter_group), where n_iter is the iteration\nwhose data are being considered and iter_group is the corresponding group\nin the main WEST HDF5 file (west.h5). The function must return data which can\nbe indexed as [segment][timepoint][dimension].\n\nTo use a list of data set specifications, specify --dsspecs and then list the\ndesired datasets one-by-one (space-separated in most shells). These data set\nspecifications are formatted as NAME[,file=FILENAME,slice=SLICE], which will\nuse the dataset called NAME in the HDF5 file FILENAME (defaulting to the main\nWEST HDF5 file west.h5), and slice it with the Python slice expression SLICE\n(as in [0:2] to select the first two elements of the first axis of the\ndataset). The ``slice`` option is most useful for selecting one column (or\nmore) from a multi-column dataset, such as arises when using a progress\ncoordinate of multiple dimensions.\n\n\n---\nSpecifying macrostates\n---\n\nOptionally, kinetic macrostates may be defined in terms of sets of bins.\nEach trajectory will be labeled with the kinetic macrostate it was most\nrecently in at each timepoint, for use in subsequent kinetic analysis.\nThis is required for all kinetics analysis (w_kintrace and w_kinmat).\n\nThere are three ways to specify macrostates:\n\n 1. States corresponding to single bins may be identified on the command\n line using the --states option, which takes multiple arguments, one for\n each state (separated by spaces in most shells). Each state is specified\n as a coordinate tuple, with an optional label prepended, as in\n ``bound:1.0`` or ``unbound:(2.5,2.5)``. Unlabeled states are named\n ``stateN``, where N is the (zero-based) position in the list of states\n supplied to --states.\n\n 2. States corresponding to multiple bins may use a YAML input file specified\n with --states-from-file. This file defines a list of states, each with a\n name and a list of coordinate tuples; bins containing these coordinates\n will be mapped to the containing state. For instance, the following\n file::\n\n ---\n states:\n - label: unbound\n coords:\n - [9.0, 1.0]\n - [9.0, 2.0]\n - label: bound\n coords:\n - [0.1, 0.0]\n\n produces two macrostates: the first state is called "unbound" and\n consists of bins containing the (2-dimensional) progress coordinate\n values (9.0, 1.0) and (9.0, 2.0); the second state is called "bound"\n and consists of the single bin containing the point (0.1, 0.0).\n\n 3. Arbitrary state definitions may be supplied by a user-defined function,\n specified as --states-from-function=MODULE.FUNCTION. This function is\n called with the bin mapper as an argument (``function(mapper)``) and must\n return a list of dictionaries, one per state. Each dictionary must contain\n a vector of coordinate tuples with key "coords"; the bins into which each\n of these tuples falls define the state. An optional name for the state\n (with key "label") may also be provided.\n\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "assign.h5") contains the following\nattributes datasets:\n\n ``nbins`` attribute\n *(Integer)* Number of valid bins. Bin assignments range from 0 to\n *nbins*-1, inclusive.\n\n ``nstates`` attribute\n *(Integer)* Number of valid macrostates (may be zero if no such states are\n specified). Trajectory ensemble assignments range from 0 to *nstates*-1,\n inclusive, when states are defined.\n\n ``/assignments`` [iteration][segment][timepoint]\n *(Integer)* Per-segment and -timepoint assignments (bin indices).\n\n ``/npts`` [iteration]\n *(Integer)* Number of timepoints in each iteration.\n\n ``/nsegs`` [iteration]\n *(Integer)* Number of segments in each iteration.\n\n ``/labeled_populations`` [iterations][state][bin]\n *(Floating-point)* Per-iteration and -timepoint bin populations, labeled\n by most recently visited macrostate. The last state entry (*nstates-1*)\n corresponds to trajectories initiated outside of a defined macrostate.\n\n ``/bin_labels`` [bin]\n *(String)* Text labels of bins.\n\nWhen macrostate assignments are given, the following additional datasets are\npresent:\n\n ``/trajlabels`` [iteration][segment][timepoint]\n *(Integer)* Per-segment and -timepoint trajectory labels, indicating the\n macrostate which each trajectory last visited.\n\n ``/state_labels`` [state]\n *(String)* Labels of states.\n\n ``/state_map`` [bin]\n *(Integer)* Mapping of bin index to the macrostate containing that bin.\n An entry will contain *nbins+1* if that bin does not fall into a\n macrostate.\n\nDatasets indexed by state and bin contain one more entry than the number of\nvalid states or bins. For *N* bins, axes indexed by bin are of size *N+1*, and\nentry *N* (0-based indexing) corresponds to a walker outside of the defined bin\nspace (which will cause most mappers to raise an error). More importantly, for\n*M* states (including the case *M=0* where no states are specified), axes\nindexed by state are of size *M+1* and entry *M* refers to trajectories\ninitiated in a region not corresponding to a defined macrostate.\n\nThus, ``labeled_populations[:,:,:].sum(axis=1)[:,:-1]`` gives overall per-bin\npopulations, for all defined bins and\n``labeled_populations[:,:,:].sum(axis=2)[:,:-1]`` gives overall\nper-trajectory-ensemble populations for all defined states.\n\n\n---\nParallelization\n---\n\nThis tool supports parallelized binning, including reading/calculating input\ndata.\n\n\n---\nCommand-line options\n---\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
parse_cmdline_states(state_strings)

	

	
load_config_from_west(scheme)

	

	
load_state_file(state_filename)

	

	
states_from_dict(ystates)

	

	
load_states_from_function(statefunc)

	

	
assign_iteration(n_iter, nstates, nbins, state_map, last_labels)

	Method to encapsulate the segment slicing (into n_worker slices) and parallel job submission
Submits job(s), waits on completion, splices them back together
Returns: assignments, trajlabels, pops for this iteration

	
go()

	Perform the analysis associated with this tool.

	
westpa.cli.tools.w_assign.entry_point()

	

w_trace

usage:

w_trace [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-W WEST_H5FILE]
 [-d DSNAME] [--output-pattern OUTPUT_PATTERN] [-o OUTPUT]
 N_ITER:SEG_ID [N_ITER:SEG_ID ...]

Trace individual WEST trajectories and emit (or calculate) quantities along the
trajectory.

Trajectories are specified as N_ITER:SEG_ID pairs. Each segment is traced back
to its initial point, and then various quantities (notably n_iter and seg_id)
are printed in order from initial point up until the given segment in the given
iteration.

Output is stored in several files, all named according to the pattern given by
the -o/–output-pattern parameter. The default output pattern is “traj_%d_%d”,
where the printf-style format codes are replaced by the iteration number and
segment ID of the terminal segment of the trajectory being traced.

Individual datasets can be selected for writing using the -d/--dataset option
(which may be specified more than once). The simplest form is -d dsname,
which causes data from dataset dsname along the trace to be stored to
HDF5. The dataset is assumed to be stored on a per-iteration basis, with
the first dimension corresponding to seg_id and the second dimension
corresponding to time within the segment. Further options are specified
as comma-separated key=value pairs after the data set name, as in:

-d dsname,alias=newname,index=idsname,file=otherfile.h5,slice=[100,...]

The following options for datasets are supported:

alias=newname
 When writing this data to HDF5 or text files, use ``newname``
 instead of ``dsname`` to identify the dataset. This is mostly of
 use in conjunction with the ``slice`` option in order, e.g., to
 retrieve two different slices of a dataset and store then with
 different names for future use.

index=idsname
 The dataset is not stored on a per-iteration basis for all
 segments, but instead is stored as a single dataset whose
 first dimension indexes n_iter/seg_id pairs. The index to
 these n_iter/seg_id pairs is ``idsname``.

file=otherfile.h5
 Instead of reading data from the main WEST HDF5 file (usually
 ``west.h5``), read data from ``otherfile.h5``.

slice=[100,...]
 Retrieve only the given slice from the dataset. This can be
 used to pick a subset of interest to minimize I/O.

positional arguments

N_ITER:SEG_ID Trace trajectory ending (or at least alive at) N_ITER:SEG_ID.

optional arguments

-h, --help show this help message and exit
-d DSNAME, --dataset DSNAME
 Include the dataset named DSNAME in trace output. An extended form like
 DSNAME[,alias=ALIAS][,index=INDEX][,file=FILE][,slice=SLICE] will obtain the
 dataset from the given FILE instead of the main WEST HDF5 file, slice it by
 SLICE, call it ALIAS in output, and/or access per-segment data by a
 n_iter,seg_id INDEX instead of a seg_id indexed dataset in the group for
 n_iter.

general options

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

WEST input data options

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

output options

--output-pattern OUTPUT_PATTERN
 Write per-trajectory data to output files/HDF5 groups whose names begin with
 OUTPUT_PATTERN, which must contain two printf-style format flags which will be
 replaced with the iteration number and segment ID of the terminal segment of
 the trajectory being traced. (Default: traj_%d_%d.)
-o OUTPUT, --output OUTPUT
 Store intermediate data and analysis results to OUTPUT (default: trajs.h5).

westpa.cli.tools.w_trace module

	
class westpa.cli.tools.w_trace.WESTTool

	Bases: WESTToolComponent

Base class for WEST command line tools

	
prog = None

	

	
usage = None

	

	
description = None

	

	
epilog = None

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
make_parser(prog=None, usage=None, description=None, epilog=None, args=None)

	

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then call self.go()

	
class westpa.cli.tools.w_trace.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_trace.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.cli.tools.w_trace.InitialState(state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None, basis_auxref=None)

	Bases: object

Describes an initial state for a new trajectory. These are generally constructed by
appropriate modification of a basis state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	basis_state_id – Identifier of the basis state from which this state was
generated, or None.

	basis_state – The BasisState from which this state was generated, or None.

	iter_created – Iteration in which this state was generated (0 for
simulation initialization).

	iter_used – Iteration in which this state was used to initiate a
trajectory (None for unused).

	istate_type – Integer describing the type of this initial state
(ISTATE_TYPE_BASIS for direct use of a basis state,
ISTATE_TYPE_GENERATED for a state generated from a basis state,
ISTATE_TYPE_RESTART for a state corresponding to the endpoint
of a segment in another simulation, or
ISTATE_TYPE_START for a state generated from a start state).

	istate_status – Integer describing whether this initial state has been properly
prepared.

	pcoord – The representative progress coordinate of this state.

	
ISTATE_TYPE_UNSET = 0

	

	
ISTATE_TYPE_BASIS = 1

	

	
ISTATE_TYPE_GENERATED = 2

	

	
ISTATE_TYPE_RESTART = 3

	

	
ISTATE_TYPE_START = 4

	

	
ISTATE_UNUSED = 0

	

	
ISTATE_STATUS_PENDING = 0

	

	
ISTATE_STATUS_PREPARED = 1

	

	
ISTATE_STATUS_FAILED = 2

	

	
istate_types = {'ISTATE_TYPE_BASIS': 1, 'ISTATE_TYPE_GENERATED': 2, 'ISTATE_TYPE_RESTART': 3, 'ISTATE_TYPE_START': 4, 'ISTATE_TYPE_UNSET': 0}

	

	
istate_type_names = {0: 'ISTATE_TYPE_UNSET', 1: 'ISTATE_TYPE_BASIS', 2: 'ISTATE_TYPE_GENERATED', 3: 'ISTATE_TYPE_RESTART', 4: 'ISTATE_TYPE_START'}

	

	
istate_statuses = {'ISTATE_STATUS_FAILED': 2, 'ISTATE_STATUS_PENDING': 0, 'ISTATE_STATUS_PREPARED': 1}

	

	
istate_status_names = {0: 'ISTATE_STATUS_PENDING', 1: 'ISTATE_STATUS_PREPARED', 2: 'ISTATE_STATUS_FAILED'}

	

	
as_numpy_record()

	

	
westpa.cli.tools.w_trace.weight_dtype

	alias of float64

	
westpa.cli.tools.w_trace.n_iter_dtype

	alias of uint32

	
westpa.cli.tools.w_trace.seg_id_dtype

	alias of int64

	
westpa.cli.tools.w_trace.utime_dtype

	alias of float64

	
class westpa.cli.tools.w_trace.Trace(summary, endpoint_type, basis_state, initial_state, data_manager=None)

	Bases: object

A class representing a trace of a certain trajectory segment back to its origin.

	
classmethod from_data_manager(n_iter, seg_id, data_manager=None)

	Construct and return a trajectory trace whose last segment is identified
by seg_id in the iteration number n_iter.

	
get_segment_data_slice(datafile, dsname, n_iter, seg_id, slice_=None, index_data=None, iter_prec=None)

	Return the data from the dataset named dsname within the given datafile (an open
h5py.File object) for the given iteration and segment. By default, it is assumed that the
dataset is stored in the iteration group for iteration n_iter, but if index_data
is provided, it must be an iterable (preferably a simple array) of (n_iter,seg_id) pairs,
and the index in the index_data iterable of the matching n_iter/seg_id pair is used as
the index of the data to retrieve.

If an optional slice_ is provided, then the given slicing tuple is appended to that
used to retrieve the segment-specific data (i.e. it can be used to pluck a subset of the
data that would otherwise be returned).

	
trace_timepoint_dataset(dsname, slice_=None, auxfile=None, index_ds=None)

	Return a trace along this trajectory over a dataset which is layed out as [seg_id][timepoint][…].
Overlapping values at segment boundaries are accounted for. Returns (data_trace, weight), where
data_trace is a time series of the dataset along this trajectory, and weight is the corresponding
trajectory weight at each time point.

If auxfile is given, then load the dataset from the given HDF5 file, which must be
layed out the same way as the main HDF5 file (e.g. iterations arranged as
iterations/iter_*).

If index_ds is given, instead of reading data per-iteration from iter_* groups, then the
given index_ds is used as an index of n_iter,seg_id pairs into dsname. In this case,
the target data set need not exist on a per-iteration basis inside iter_* groups.

If slice_ is given, then further slice the data returned from the HDF5 dataset. This can
minimize I/O if it is known (and specified) that only a subset of the data along the
trajectory is needed.

	
class westpa.cli.tools.w_trace.WTraceTool

	Bases: WESTTool

	
prog = 'w_trace'

	

	
description = 'Trace individual WEST trajectories and emit (or calculate) quantities along the\ntrajectory.\n\nTrajectories are specified as N_ITER:SEG_ID pairs. Each segment is traced back\nto its initial point, and then various quantities (notably n_iter and seg_id)\nare printed in order from initial point up until the given segment in the given\niteration.\n\nOutput is stored in several files, all named according to the pattern given by\nthe -o/--output-pattern parameter. The default output pattern is "traj_%d_%d",\nwhere the printf-style format codes are replaced by the iteration number and\nsegment ID of the terminal segment of the trajectory being traced.\n\nIndividual datasets can be selected for writing using the -d/--dataset option\n(which may be specified more than once). The simplest form is ``-d dsname``,\nwhich causes data from dataset ``dsname`` along the trace to be stored to\nHDF5. The dataset is assumed to be stored on a per-iteration basis, with\nthe first dimension corresponding to seg_id and the second dimension\ncorresponding to time within the segment. Further options are specified\nas comma-separated key=value pairs after the data set name, as in\n\n -d dsname,alias=newname,index=idsname,file=otherfile.h5,slice=[100,...]\n\nThe following options for datasets are supported:\n\n alias=newname\n When writing this data to HDF5 or text files, use ``newname``\n instead of ``dsname`` to identify the dataset. This is mostly of\n use in conjunction with the ``slice`` option in order, e.g., to\n retrieve two different slices of a dataset and store then with\n different names for future use.\n\n index=idsname\n The dataset is not stored on a per-iteration basis for all\n segments, but instead is stored as a single dataset whose\n first dimension indexes n_iter/seg_id pairs. The index to\n these n_iter/seg_id pairs is ``idsname``.\n\n file=otherfile.h5\n Instead of reading data from the main WEST HDF5 file (usually\n ``west.h5``), read data from ``otherfile.h5``.\n\n slice=[100,...]\n Retrieve only the given slice from the dataset. This can be\n used to pick a subset of interest to minimize I/O.\n\n---\n'

	

	
pcoord_formats = {'f4': '%14.7g', 'f8': '%023.15g', 'i2': '%6d', 'i4': '%11d', 'i8': '%20d', 'u2': '%5d', 'u4': '%10d', 'u8': '%20d'}

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
parse_dataset_string(dsstr)

	

	
go()

	Perform the analysis associated with this tool.

	
emit_trace_h5(trace, output_group)

	

	
emit_trace_text(trace, output_file)

	Dump summary information about each segment in the given trace to the given output_file,
which must be opened for writing in text mode. Output columns are separated by at least
one space.

	
westpa.cli.tools.w_trace.entry_point()

	

w_ipa

The w_ipa is a (beta) WESTPA tool that automates analysis using analysis schemes and enables interactive analysis of WESTPA simulation data. The tool can do a variety of different types of analysis, including the following:
* Calculate fluxes and rate constants
* Adjust and use alternate state definitions
* Trace trajectory segments, including statistical weights, position along the progress coordinate, and other auxiliary data
* Plot all of the above in the terminal!

If you are using w_ipa for kinetics automated kinetics analysis, keep in mind that w_ipa is running w_assign and w_direct using the scheme designated in your west.cfg file. For more diverse kinetics analysis options, consider using w_assign and w_direct manually. This can be useful if you’d like to use auxiliary coordinates that aren’t your progress coordinate, in one or two dimension options.

usage:

w_ipa [-h] [-r RCFILE] [--quiet] [--verbose] [--version] [--max-queue-length MAX_QUEUE_LENGTH]
 [-W WEST_H5FILE] [--analysis-only] [--reanalyze] [--ignore-hash] [--debug] [--terminal]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

optional arguments:

-h, --help show this help message and exit

	general options:
	
	-r RCFILE, --rcfile RCFILE

	use RCFILE as the WEST run-time configuration file (default: west.cfg)

	--quiet

	emit only essential information

	--verbose

	emit extra information

	--version

	show program’s version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks that
 have very large requests/response. Default: no limit.

	WEST input data options:
	
	-W WEST_H5FILE, --west-data WEST_H5FILE

	Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
west.cfg).

runtime options:

--analysis-only, -ao Use this flag to run the analysis and return to the terminal.
--reanalyze, -ra Use this flag to delete the existing files and reanalyze.
--ignore-hash, -ih Ignore hash and don't regenerate files.
--debug, -d Debug output largely intended for development.
--terminal, -t Plot output in terminal.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work managers
 are ('serial', 'threads', 'processes', 'zmq'); default is 'processes'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option. Use
 0 for a dedicated server. (Ignored by work managers which do not support this
 option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a deprecated
 synonym for "master" and "client" is a deprecated synonym for "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g. /tmp);
 on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read this
 file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting in
 coordinating the communication of other nodes to choose ports randomly, writing
 that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic toward
 the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result) traffic
 from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker in
 WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

westpa.cli.tools.w_ipa module

	
class westpa.cli.tools.w_ipa.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_ipa.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_ipa.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.w_ipa.Plotter(h5file, h5key, iteration=-1, interface='matplotlib')

	Bases: object

This is a semi-generic plotting interface that has a built in curses based terminal plotter.
It’s fairly specific to what we’re using it for here, but we could (and maybe should) build it out into
a little library that we can use via the command line to plot things. Might be useful for looking at data later.
That would also cut the size of this tool down by a good bit.

	
plot(i=0, j=1, tau=1, iteration=None, dim=0, interface=None)

	

	
class westpa.cli.tools.w_ipa.WIPIDataset(raw, key)

	Bases: object

	
keys()

	

	
class westpa.cli.tools.w_ipa.WIPIScheme(scheme, name, parent, settings)

	Bases: object

	
property scheme

	

	
property list_schemes

	Lists what schemes are configured in west.cfg file.
Schemes should be structured as follows, in west.cfg:

	west:
	
	system:
	
	analysis:
	directory: analysis
analysis_schemes:

	scheme.1:
	enabled: True
states:

	label: unbound
coords: [[7.0]]

	label: bound
coords: [[2.7]]

	bins:
	
	type: RectilinearBinMapper
boundaries: [[0.0, 2.80, 7, 10000]]

	
property iteration

	

	
property assign

	

	
property direct

	The output from w_direct.py from the current scheme.

	
property state_labels

	

	
property bin_labels

	

	
property west

	

	
property reweight

	

	
property current

	The current iteration. See help for __get_data_for_iteration__

	
property past

	The previous iteration. See help for __get_data_for_iteration__

	
class westpa.cli.tools.w_ipa.WIPI

	Bases: WESTParallelTool

Welcome to w_ipa (WESTPA Interactive Python Analysis)!
From here, you can run traces, look at weights, progress coordinates, etc.
This is considered a ‘stateful’ tool; that is, the data you are pulling is always pulled
from the current analysis scheme and iteration.
By default, the first analysis scheme in west.cfg is used, and you are set at iteration 1.

ALL PROPERTIES ARE ACCESSED VIA w or west
To see the current iteration, try:

w.iteration
OR
west.iteration

to set it, simply plug in a new value.

w.iteration = 100

To change/list the current analysis schemes:

w.list_schemes
w.scheme = OUTPUT FROM w.list_schemes

To see the states and bins defined in the current analysis scheme:

w.states
w.bin_labels

All information about the current iteration is available in an object called ‘current’:

w.current
walkers, summary, states, seg_id, weights, parents, kinavg, pcoord, bins, populations, and auxdata, if it exists.

In addition, the function w.trace(seg_id) will run a trace over a seg_id in the current iteration and return a dictionary
containing all pertinent information about that seg_id’s history. It’s best to store this, as the trace can be expensive.

Run help on any function or property for more information!

Happy analyzing!

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
hash_args(args, extra=None, path=None)

	Create unique hash stamp to determine if arguments/file is different from before.

	
stamp_hash(h5file_name, new_hash)

	Loads a file, stamps it, and returns the opened file in read only

	
analysis_structure()

	Run automatically on startup. Parses through the configuration file, and loads up all the data files from the different
analysis schematics. If they don’t exist, it creates them automatically by hooking in to existing analysis routines
and going from there.

It does this by calling in the make_parser_and_process function for w_{assign,reweight,direct} using a custom built list
of args. The user can specify everything in the configuration file that would have been specified on the command line.

For instance, were one to call w_direct as follows:

w_direct –evolution cumulative –step-iter 1 –disable-correl

the west.cfg would look as follows:

	west:
	
	analysis:
	
	w_direct:
	evolution: cumulative
step_iter: 1
extra: [‘disable-correl’]

Alternatively, if one wishes to use the same options for both w_direct and w_reweight, the key ‘w_direct’ can be replaced
with ‘kinetics’.

	
property assign

	

	
property direct

	The output from w_kinavg.py from the current scheme.

	
property state_labels

	

	
property bin_labels

	

	
property west

	

	
property reweight

	

	
property scheme

	Returns and sets what scheme is currently in use.
To see what schemes are available, run:

w.list_schemes

	
property list_schemes

	Lists what schemes are configured in west.cfg file.
Schemes should be structured as follows, in west.cfg:

	west:
	
	system:
	
	analysis:
	directory: analysis
analysis_schemes:

	scheme.1:
	enabled: True
states:

	label: unbound
coords: [[7.0]]

	label: bound
coords: [[2.7]]

	bins:
	
	type: RectilinearBinMapper
boundaries: [[0.0, 2.80, 7, 10000]]

	
property iteration

	Returns/sets the current iteration.

	
property current

	The current iteration. See help for __get_data_for_iteration__

	
property past

	The previous iteration. See help for __get_data_for_iteration__

	
trace(seg_id)

	Runs a trace on a seg_id within the current iteration, all the way back to the beginning,
returning a dictionary containing all interesting information:

seg_id, pcoord, states, bins, weights, iteration, auxdata (optional)

sorted in chronological order.

Call with a seg_id.

	
property future

	Similar to current/past, but keyed differently and returns different datasets.
See help for Future.

	
class Future(raw, key)

	Bases: WIPIDataset

	
go()

	Function automatically called by main() when launched via the command line interface.
Generally, call main, not this function.

	
property introduction

	Just spits out an introduction, in case someone doesn’t call help.

	
property help

	Just a minor function to call help on itself. Only in here to really help someone get help.

	
westpa.cli.tools.w_ipa.entry_point()

	

w_pdist

w_pdist constructs and calculates the progress coordinate probability
distribution’s evolution over a user-specified number of simulation iterations.
w_pdist supports progress coordinates with dimensionality ≥ 1.

The resulting distribution can be viewed with the plothist tool.

Overview

Usage:

w_pdist [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [-W WEST_H5FILE] [--first-iter N_ITER] [--last-iter N_ITER]
 [-b BINEXPR] [-o OUTPUT]
 [--construct-dataset CONSTRUCT_DATASET | --dsspecs DSSPEC [DSSPEC ...]]
 [--serial | --parallel | --work-manager WORK_MANAGER]
 [--n-workers N_WORKERS] [--zmq-mode MODE]
 [--zmq-info INFO_FILE] [--zmq-task-endpoint TASK_ENDPOINT]
 [--zmq-result-endpoint RESULT_ENDPOINT]
 [--zmq-announce-endpoint ANNOUNCE_ENDPOINT]
 [--zmq-listen-endpoint ANNOUNCE_ENDPOINT]
 [--zmq-heartbeat-interval INTERVAL]
 [--zmq-task-timeout TIMEOUT] [--zmq-client-comm-mode MODE]

Note: This tool supports parallelization, which may be more efficient for
especially large datasets.

Command-Line Options

See the general command-line tool reference for more
information on the general options.

Input/output options

These arguments allow the user to specify where to read input simulation result
data and where to output calculated progress coordinate probability
distribution data.

Both input and output files are hdf5 format:

-W, --WEST_H5FILE file
 Read simulation result data from file *file*. (**Default:** The
 hdf5 file specified in the configuration file (default config file
 is *west.h5*))

-o, --output file
 Store this tool's output in *file*. (**Default:** The *hdf5* file
 pcpdist.h5)

Iteration range options

Specify the range of iterations over which to construct the progress
coordinate probability distribution.:

--first-iter n_iter
 Construct probability distribution starting with iteration *n_iter*
 (**Default:** 1)

--last-iter n_iter
 Construct probability distribution's time evolution up to (and
 including) iteration *n_iter* (**Default:** Last completed
 iteration)

Probability distribution binning options

Specify the number of bins to use when constructing the progress
coordinate probability distribution. If using a multidimensional
progress coordinate, different binning schemes can be used for the
probability distribution for each progress coordinate.:

-b binexpr
 binexpr specifies the number and formatting of the bins. Its
 format can be as follows:

 1. an integer, in which case all distributions have that many
 equal sized bins
 2. a python-style list of integers, of length corresponding to
 the number of dimensions of the progress coordinate, in which
 case each progress coordinate's probability distribution has the
 corresponding number of bins
 3. a python-style list of lists of scalars, where the list at
 each index corresponds to each dimension of the progress
 coordinate and specifies specific bin boundaries for that
 progress coordinate's probability distribution.

 (**Default:** 100 bins for all progress coordinates)

Examples

Assuming simulation results are stored in west.h5 (which is specified in the
configuration file named west.cfg), for a simulation with a 1-dimensional
progress coordinate:

Calculate a probability distribution histogram using all default options
(output file: pdist.h5; histogram binning: 100 equal sized bins; probability
distribution over the lowest reached progress coordinate to the largest; work
is parallelized over all available local cores using the ‘processes’ work
manager):

w_pdist

Same as above, except using the serial work manager (which may be more
efficient for smaller datasets):

w_pdist --serial

westpa.cli.tools.w_pdist module

	
class westpa.cli.tools.w_pdist.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_pdist.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_pdist.WESTDSSynthesizer(default_dsname=None, h5filename=None)

	Bases: WESTToolComponent

Tool for synthesizing a dataset for analysis from other datasets. This
may be done using a custom function, or a list of “data set specifications”.
It is anticipated that if several source datasets are required, then a tool
will have multiple instances of this class.

	
group_name = 'input dataset options'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.w_pdist.WESTWDSSynthesizer(default_dsname=None, h5filename=None)

	Bases: WESTToolComponent

	
group_name = 'weight dataset options'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.w_pdist.IterRangeSelection(data_manager=None)

	Bases: WESTToolComponent

Select and record limits on iterations used in analysis and/or reporting.
This class provides both the user-facing command-line options and parsing, and
the application-side API for recording limits in HDF5.

HDF5 datasets calculated based on a restricted set of iterations should be tagged
with the following attributes:

	first_iter
	The first iteration included in the calculation.

	last_iter
	One past the last iteration included in the calculation.

	iter_step
	Blocking or sampling period for iterations included in the calculation.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args, override_iter_start=None, override_iter_stop=None, default_iter_step=1)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
iter_block_iter()

	Return an iterable of (block_start,block_end) over the blocks of iterations
selected by –first-iter/–last-iter/–step-iter.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter)
selected by –first-iter/–last-iter/–step-iter.

	
record_data_iter_range(h5object, iter_start=None, iter_stop=None)

	Store attributes iter_start and iter_stop on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data at least for the iteration range specified.

	
check_data_iter_range_equal(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data exactly for the iteration range specified.

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride (in other words, the given iter_step is a multiple of the stride with
which data was recorded).

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, iter_start=None, iter_stop=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(iter_start=None, iter_stop=None, iter_step=None, dtype=None)

	Return a sequence for the given iteration numbers and stride, filling
in missing values from those stored on self. The smallest data type capable of
holding iter_stop is returned unless otherwise specified using the dtype
argument.

	
class westpa.cli.tools.w_pdist.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
westpa.cli.tools.w_pdist.histnd(values, binbounds, weights=1.0, out=None, binbound_check=True, ignore_out_of_range=False)

	Generate an N-dimensional PDF (or contribution to a PDF) from the given values.
binbounds is a list of arrays of boundary values, with one entry for each
dimension (values must have as many columns as there are entries in binbounds)
weight, if provided, specifies the weight each value contributes to the
histogram; this may be a scalar (for equal weights for all values) or a vector of
the same length as values (for unequal weights). If binbound_check is True, then
the boundaries are checked for strict positive monotonicity; set to False to shave a few
microseconds if you know your bin boundaries to be monotonically increasing.

	
westpa.cli.tools.w_pdist.normhistnd(hist, binbounds)

	Normalize the N-dimensional histogram hist with corresponding
bin boundaries binbounds. Modifies hist in place and returns
the normalization factor used.

	
westpa.cli.tools.w_pdist.isiterable(x)

	

	
class westpa.cli.tools.w_pdist.WPDist

	Bases: WESTParallelTool

	
prog = 'w_pdist'

	

	
description = 'Calculate time-resolved, multi-dimensional probability distributions of WE\ndatasets.\n\n\n---\nSource data\n---\n\nSource data is provided either by a user-specified function\n(--construct-dataset) or a list of "data set specifications" (--dsspecs).\nIf neither is provided, the progress coordinate dataset \'\'pcoord\'\' is used.\n\nTo use a custom function to extract or calculate data whose probability\ndistribution will be calculated, specify the function in standard Python\nMODULE.FUNCTION syntax as the argument to --construct-dataset. This function\nwill be called as function(n_iter,iter_group), where n_iter is the iteration\nwhose data are being considered and iter_group is the corresponding group\nin the main WEST HDF5 file (west.h5). The function must return data which can\nbe indexed as [segment][timepoint][dimension].\n\nTo use a list of data set specifications, specify --dsspecs and then list the\ndesired datasets one-by-one (space-separated in most shells). These data set\nspecifications are formatted as NAME[,file=FILENAME,slice=SLICE], which will\nuse the dataset called NAME in the HDF5 file FILENAME (defaulting to the main\nWEST HDF5 file west.h5), and slice it with the Python slice expression SLICE\n(as in [0:2] to select the first two elements of the first axis of the\ndataset). The ``slice`` option is most useful for selecting one column (or\nmore) from a multi-column dataset, such as arises when using a progress\ncoordinate of multiple dimensions.\n\n\n---\nHistogram binning\n---\n\nBy default, histograms are constructed with 100 bins in each dimension. This\ncan be overridden by specifying -b/--bins, which accepts a number of different\nkinds of arguments:\n\n a single integer N\n N uniformly spaced bins will be used in each dimension.\n\n a sequence of integers N1,N2,... (comma-separated)\n N1 uniformly spaced bins will be used for the first dimension, N2 for the\n second, and so on.\n\n a list of lists [[B11, B12, B13, ...], [B21, B22, B23, ...], ...]\n The bin boundaries B11, B12, B13, ... will be used for the first dimension,\n B21, B22, B23, ... for the second dimension, and so on. These bin\n boundaries need not be uniformly spaced. These expressions will be\n evaluated with Python\'s ``eval`` construct, with ``np`` available for\n use [e.g. to specify bins using np.arange()].\n\nThe first two forms (integer, list of integers) will trigger a scan of all\ndata in each dimension in order to determine the minimum and maximum values,\nwhich may be very expensive for large datasets. This can be avoided by\nexplicitly providing bin boundaries using the list-of-lists form.\n\nNote that these bins are *NOT* at all related to the bins used to drive WE\nsampling.\n\n\n---\nOutput format\n---\n\nThe output file produced (specified by -o/--output, defaulting to "pdist.h5")\nmay be fed to plothist to generate plots (or appropriately processed text or\nHDF5 files) from this data. In short, the following datasets are created:\n\n ``histograms``\n Normalized histograms. The first axis corresponds to iteration, and\n remaining axes correspond to dimensions of the input dataset.\n\n ``/binbounds_0``\n Vector of bin boundaries for the first (index 0) dimension. Additional\n datasets similarly named (/binbounds_1, /binbounds_2, ...) are created\n for additional dimensions.\n\n ``/midpoints_0``\n Vector of bin midpoints for the first (index 0) dimension. Additional\n datasets similarly named are created for additional dimensions.\n\n ``n_iter``\n Vector of iteration numbers corresponding to the stored histograms (i.e.\n the first axis of the ``histograms`` dataset).\n\n\n---\nSubsequent processing\n---\n\nThe output generated by this program (-o/--output, default "pdist.h5") may be\nplotted by the ``plothist`` program. See ``plothist --help`` for more\ninformation.\n\n\n---\nParallelization\n---\n\nThis tool supports parallelized binning, including reading of input data.\nParallel processing is the default. For simple cases (reading pre-computed\ninput data, modest numbers of segments), serial processing (--serial) may be\nmore efficient.\n\n\n---\nCommand-line options\n---\n\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
static parse_binspec(binspec)

	

	
construct_bins(bins)

	Construct bins according to bins, which may be:

	A scalar integer (for that number of bins in each dimension)

	A sequence of integers (specifying number of bins for each dimension)

	A sequence of sequences of bin boundaries (specifying boundaries for each dimension)

Sets self.binbounds to a list of arrays of bin boundaries appropriate for passing to
fasthist.histnd, along with self.midpoints to the midpoints of the bins.

	
scan_data_shape()

	

	
scan_data_range()

	Scan input data for range in each dimension. The number of dimensions is determined
from the shape of the progress coordinate as of self.iter_start.

	
construct_histogram()

	Construct a histogram using bins previously constructed with construct_bins().
The time series of histogram values is stored in histograms.
Each histogram in the time series is normalized.

	
westpa.cli.tools.w_pdist.entry_point()

	

w_succ

usage:

w_succ [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-A H5FILE] [-W WEST_H5FILE]
 [-o OUTPUT_FILE]

List segments which successfully reach a target state.

optional arguments:

-h, --help show this help message and exit
-o OUTPUT_FILE, --output OUTPUT_FILE
 Store output in OUTPUT_FILE (default: write to standard output).

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

general analysis options:

-A H5FILE, --analysis-file H5FILE
 Store intermediate and final results in H5FILE (default: analysis.h5).

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

westpa.cli.core.w_succ module

	
class westpa.cli.core.w_succ.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.cli.core.w_succ.WESTAnalysisTool

	Bases: object

	
add_args(parser, upcall=True)

	Add arguments to a parser common to all analyses of this type.

	
process_args(args, upcall=True)

	

	
open_analysis_backing()

	

	
close_analysis_backing()

	

	
require_analysis_group(groupname, replace=False)

	

	
class westpa.cli.core.w_succ.WESTDataReaderMixin

	Bases: AnalysisMixin

A mixin for analysis requiring access to the HDF5 files generated during a WEST run.

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
clear_run_cache()

	

	
property cache_pcoords

	Whether or not to cache progress coordinate data. While caching this data
can significantly speed up some analysis operations, this requires
copious RAM.

Setting this to False when it was formerly True will release any cached data.

	
get_summary_table()

	

	
get_iter_group(n_iter)

	Return the HDF5 group corresponding to n_iter

	
get_segments(n_iter, include_pcoords=True)

	Return all segments present in iteration n_iter

	
get_segments_by_id(n_iter, seg_ids, include_pcoords=True)

	Get segments from the data manager, employing caching where possible

	
get_children(segment, include_pcoords=True)

	

	
get_seg_index(n_iter)

	

	
get_wtg_parent_array(n_iter)

	

	
get_parent_array(n_iter)

	

	
get_pcoord_array(n_iter)

	

	
get_pcoord_dataset(n_iter)

	

	
get_pcoords(n_iter, seg_ids)

	

	
get_seg_ids(n_iter, bool_array=None)

	

	
get_created_seg_ids(n_iter)

	Return a list of seg_ids corresponding to segments which were created for the given iteration (are not
continuations).

	
max_iter_segs_in_range(first_iter, last_iter)

	Return the maximum number of segments present in any iteration in the range selected

	
total_segs_in_range(first_iter, last_iter)

	Return the total number of segments present in all iterations in the range selected

	
get_pcoord_len(n_iter)

	Get the length of the progress coordinate array for the given iteration.

	
get_total_time(first_iter=None, last_iter=None, dt=None)

	Return the total amount of simulation time spanned between first_iter and last_iter (inclusive).

	
class westpa.cli.core.w_succ.CommonOutputMixin

	Bases: AnalysisMixin

	
add_common_output_args(parser_or_group)

	

	
process_common_output_args(args)

	

	
class westpa.cli.core.w_succ.WSucc

	Bases: CommonOutputMixin, WESTDataReaderMixin, WESTAnalysisTool

	
find_successful_trajs()

	

	
westpa.cli.core.w_succ.entry_point()

	

w_crawl

usage:

w_crawl [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH] [-W WEST_H5FILE] [--first-iter N_ITER]
 [--last-iter N_ITER] [-c CRAWLER_INSTANCE]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]
 task_callable

Crawl a weighted ensemble dataset, executing a function for each iteration.
This can be used for postprocessing of trajectories, cleanup of datasets,
or anything else that can be expressed as “do X for iteration N, then do
something with the result”. Tasks are parallelized by iteration, and
no guarantees are made about evaluation order.

Command-line options

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks
 that have very large requests/response. Default: no limit.

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).

task options:

-c CRAWLER_INSTANCE, --crawler-instance CRAWLER_INSTANCE
 Use CRAWLER_INSTANCE (specified as module.instance) as an instance of
 WESTPACrawler to coordinate the calculation. Required only if initialization,
 finalization, or task result processing is required.
task_callable Run TASK_CALLABLE (specified as module.function) on each iteration. Required.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work
 managers are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option.
 Use 0 for a dedicated server. (Ignored by work managers which do not support
 this option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a
 deprecated synonym for "master" and "client" is a deprecated synonym for
 "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g.
 /tmp); on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read
 this file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting
 in coordinating the communication of other nodes to choose ports randomly,
 writing that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic
 toward the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result)
 traffic from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker
 in WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

westpa.cli.tools.w_crawl module

	
class westpa.cli.tools.w_crawl.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_crawl.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_crawl.IterRangeSelection(data_manager=None)

	Bases: WESTToolComponent

Select and record limits on iterations used in analysis and/or reporting.
This class provides both the user-facing command-line options and parsing, and
the application-side API for recording limits in HDF5.

HDF5 datasets calculated based on a restricted set of iterations should be tagged
with the following attributes:

	first_iter
	The first iteration included in the calculation.

	last_iter
	One past the last iteration included in the calculation.

	iter_step
	Blocking or sampling period for iterations included in the calculation.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args, override_iter_start=None, override_iter_stop=None, default_iter_step=1)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
iter_block_iter()

	Return an iterable of (block_start,block_end) over the blocks of iterations
selected by –first-iter/–last-iter/–step-iter.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter)
selected by –first-iter/–last-iter/–step-iter.

	
record_data_iter_range(h5object, iter_start=None, iter_stop=None)

	Store attributes iter_start and iter_stop on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data at least for the iteration range specified.

	
check_data_iter_range_equal(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data exactly for the iteration range specified.

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride (in other words, the given iter_step is a multiple of the stride with
which data was recorded).

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, iter_start=None, iter_stop=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(iter_start=None, iter_stop=None, iter_step=None, dtype=None)

	Return a sequence for the given iteration numbers and stride, filling
in missing values from those stored on self. The smallest data type capable of
holding iter_stop is returned unless otherwise specified using the dtype
argument.

	
class westpa.cli.tools.w_crawl.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
westpa.cli.tools.w_crawl.get_object(object_name, path=None)

	Attempt to load the given object, using additional path information if given.

	
class westpa.cli.tools.w_crawl.WESTPACrawler

	Bases: object

Base class for general crawling execution. This class
only exists on the master.

	
initialize(iter_start, iter_stop)

	Initialize this crawling process.

	
finalize()

	Finalize this crawling process.

	
process_iter_result(n_iter, result)

	Process the result of a per-iteration task.

	
class westpa.cli.tools.w_crawl.WCrawl

	Bases: WESTParallelTool

	
prog = 'w_crawl'

	

	
description = 'Crawl a weighted ensemble dataset, executing a function for each iteration.\nThis can be used for postprocessing of trajectories, cleanup of datasets,\nor anything else that can be expressed as "do X for iteration N, then do\nsomething with the result". Tasks are parallelized by iteration, and\nno guarantees are made about evaluation order.\n\n\n---\nCommand-line options\n---\n\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
westpa.cli.tools.w_crawl.entry_point()

	

w_direct

usage:

w_direct [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]
 {help,init,average,kinetics,probs,all} ...

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks that
 have very large requests/response. Default: no limit.

direct kinetics analysis schemes:

{help,init,average,kinetics,probs,all}
 help print help for this command or individual subcommands
 init calculate state-to-state kinetics by tracing trajectories
 average Averages and returns fluxes, rates, and color/state populations.
 kinetics Generates rate and flux values from a WESTPA simulation via tracing.
 probs Calculates color and state probabilities via tracing.
 all Runs the full suite, including the tracing of events.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work managers
 are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option. Use
 0 for a dedicated server. (Ignored by work managers which do not support this
 option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a deprecated
 synonym for "master" and "client" is a deprecated synonym for "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g. /tmp);
 on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read this
 file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting in
 coordinating the communication of other nodes to choose ports randomly, writing
 that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic toward
 the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result) traffic
 from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker in
 WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

westpa.cli.tools.w_direct module

	
westpa.cli.tools.w_direct.weight_dtype

	alias of float64

	
class westpa.cli.tools.w_direct.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.w_direct.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
westpa.cli.tools.w_direct.sequence_macro_flux_to_rate(dataset, pops, istate, jstate, pairwise=True, stride=None)

	Convert a sequence of macrostate fluxes and corresponding list of trajectory ensemble populations
to a sequence of rate matrices.

If the optional pairwise is true (the default), then rates are normalized according to the
relative probability of the initial state among the pair of states (initial, final); this is
probably what you want, as these rates will then depend only on the definitions of the states
involved (and never the remaining states). Otherwise (``pairwise’’ is false), the rates are
normalized according the probability of the initial state among all other states.

	
class westpa.cli.tools.w_direct.WKinetics

	Bases: object

	
w_kinetics()

	

	
class westpa.cli.tools.w_direct.WESTKineticsBase(parent)

	Bases: WESTSubcommand

Common argument processing for w_direct/w_reweight subcommands.
Mostly limited to handling input and output from w_assign.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.w_direct.AverageCommands(parent)

	Bases: WESTKineticsBase

	
default_output_file = 'direct.h5'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
stamp_mcbs_info(dataset)

	

	
open_files()

	

	
open_assignments()

	

	
print_averages(dataset, header, dim=1)

	

	
run_calculation(pi, nstates, start_iter, stop_iter, step_iter, dataset, eval_block, name, dim, do_averages=False, **extra)

	

	
westpa.cli.tools.w_direct.mcbs_ci_correl(estimator_datasets, estimator, alpha, n_sets=None, args=None, autocorrel_alpha=None, autocorrel_n_sets=None, subsample=None, do_correl=True, mcbs_enable=None, estimator_kwargs={})

	Perform a Monte Carlo bootstrap estimate for the (1-alpha) confidence interval
on the given dataset with the given estimator. This routine is appropriate
for time-correlated data, using the method described in Huber & Kim, “Weighted-ensemble
Brownian dynamics simulations for protein association reactions” (1996),
doi:10.1016/S0006-3495(96)79552-8 to determine a statistically-significant correlation time
and then reducing the dataset by a factor of that correlation time before running a “classic”
Monte Carlo bootstrap.

Returns (estimate, ci_lb, ci_ub, correl_time) where estimate is the application of the
given estimator to the input dataset, ci_lb and ci_ub are the
lower and upper limits, respectively, of the (1-alpha) confidence interval on
estimate, and correl_time is the correlation time of the dataset, significant to
(1-autocorrel_alpha).

	estimator is called as estimator(dataset, *args, **kwargs). Common estimators include:
	
	np.mean – calculate the confidence interval on the mean of dataset

	np.median – calculate a confidence interval on the median of dataset

	np.std – calculate a confidence interval on the standard deviation of datset.

n_sets is the number of synthetic data sets to generate using the given estimator,
which will be chosen using `get_bssize()`_ if n_sets is not given.

autocorrel_alpha (which defaults to alpha) can be used to adjust the significance
level of the autocorrelation calculation. Note that too high a significance level (too low an
alpha) for evaluating the significance of autocorrelation values can result in a failure to
detect correlation if the autocorrelation function is noisy.

The given subsample function is used, if provided, to subsample the dataset prior to running
the full Monte Carlo bootstrap. If none is provided, then a random entry from each correlated
block is used as the value for that block. Other reasonable choices include np.mean,
np.median, (lambda x: x[0]) or (lambda x: x[-1]). In particular, using
subsample=np.mean will converge to the block averaged mean and standard error,
while accounting for any non-normality in the distribution of the mean.

	
westpa.cli.tools.w_direct.accumulate_state_populations_from_labeled(labeled_bin_pops, state_map, state_pops, check_state_map=True)

	

	
class westpa.cli.tools.w_direct.DKinetics(parent)

	Bases: WESTKineticsBase, WKinetics

	
subcommand = 'init'

	

	
default_kinetics_file = 'direct.h5'

	

	
default_output_file = 'direct.h5'

	

	
help_text = 'calculate state-to-state kinetics by tracing trajectories'

	

	
description = 'Calculate state-to-state rates and transition event durations by tracing\ntrajectories.\n\nA bin assignment file (usually "assign.h5") including trajectory labeling\nis required (see "w_assign --help" for information on generating this file).\n\nThis subcommand for w_direct is used as input for all other w_direct\nsubcommands, which will convert the flux data in the output file into\naverage rates/fluxes/populations with confidence intervals.\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "direct.h5") contains the\nfollowing datasets:\n\n ``/conditional_fluxes`` [iteration][state][state]\n *(Floating-point)* Macrostate-to-macrostate fluxes. These are **not**\n normalized by the population of the initial macrostate.\n\n ``/conditional_arrivals`` [iteration][stateA][stateB]\n *(Integer)* Number of trajectories arriving at state *stateB* in a given\n iteration, given that they departed from *stateA*.\n\n ``/total_fluxes`` [iteration][state]\n *(Floating-point)* Total flux into a given macrostate.\n\n ``/arrivals`` [iteration][state]\n *(Integer)* Number of trajectories arriving at a given state in a given\n iteration, regardless of where they originated.\n\n ``/duration_count`` [iteration]\n *(Integer)* The number of event durations recorded in each iteration.\n\n ``/durations`` [iteration][event duration]\n *(Structured -- see below)* Event durations for transition events ending\n during a given iteration. These are stored as follows:\n\n istate\n *(Integer)* Initial state of transition event.\n fstate\n *(Integer)* Final state of transition event.\n duration\n *(Floating-point)* Duration of transition, in units of tau.\n weight\n *(Floating-point)* Weight of trajectory at end of transition, **not**\n normalized by initial state population.\n\nBecause state-to-state fluxes stored in this file are not normalized by\ninitial macrostate population, they cannot be used as rates without further\nprocessing. The ``w_direct kinetics`` command is used to perform this normalization\nwhile taking statistical fluctuation and correlation into account. See\n``w_direct kinetics --help`` for more information. Target fluxes (total flux\ninto a given state) require no such normalization.\n\n---\nCommand-line options\n---\n'

	

	
open_files()

	

	
go()

	

	
class westpa.cli.tools.w_direct.DKinAvg(parent)

	Bases: AverageCommands

	
subcommand = 'kinetics'

	

	
help_text = 'Generates rate and flux values from a WESTPA simulation via tracing.'

	

	
default_kinetics_file = 'direct.h5'

	

	
description = 'Calculate average rates/fluxes and associated errors from weighted ensemble\ndata. Bin assignments (usually "assign.h5") and kinetics data (usually\n"direct.h5") data files must have been previously generated (see\n"w_assign --help" and "w_direct init --help" for information on\ngenerating these files).\n\nThe evolution of all datasets may be calculated, with or without confidence\nintervals.\n\n---\nOutput format\n---\n\nThe output file (-o/--output, usually "direct.h5") contains the following\ndataset:\n\n /avg_rates [state,state]\n (Structured -- see below) State-to-state rates based on entire window of\n iterations selected.\n\n /avg_total_fluxes [state]\n (Structured -- see below) Total fluxes into each state based on entire\n window of iterations selected.\n\n /avg_conditional_fluxes [state,state]\n (Structured -- see below) State-to-state fluxes based on entire window of\n iterations selected.\n\nIf --evolution-mode is specified, then the following additional datasets are\navailable:\n\n /rate_evolution [window][state][state]\n (Structured -- see below). State-to-state rates based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\n /target_flux_evolution [window,state]\n (Structured -- see below). Total flux into a given macro state based on\n windows of iterations of varying width, as in /rate_evolution.\n\n /conditional_flux_evolution [window,state,state]\n (Structured -- see below). State-to-state fluxes based on windows of\n varying width, as in /rate_evolution.\n\nThe structure of these datasets is as follows:\n\n iter_start\n (Integer) Iteration at which the averaging window begins (inclusive).\n\n iter_stop\n (Integer) Iteration at which the averaging window ends (exclusive).\n\n expected\n (Floating-point) Expected (mean) value of the observable as evaluated within\n this window, in units of inverse tau.\n\n ci_lbound\n (Floating-point) Lower bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n ci_ubound\n (Floating-point) Upper bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n stderr\n (Floating-point) The standard error of the mean of the observable\n within this window, in units of inverse tau.\n\n corr_len\n (Integer) Correlation length of the observable within this window, in units\n of tau.\n\nEach of these datasets is also stamped with a number of attributes:\n\n mcbs_alpha\n (Floating-point) Alpha value of confidence intervals. (For example,\n *alpha=0.05* corresponds to a 95% confidence interval.)\n\n mcbs_nsets\n (Integer) Number of bootstrap data sets used in generating confidence\n intervals.\n\n mcbs_acalpha\n (Floating-point) Alpha value for determining correlation lengths.\n\n\n---\nCommand-line options\n---\n'

	

	
w_kinavg()

	

	
go()

	

	
class westpa.cli.tools.w_direct.DStateProbs(parent)

	Bases: AverageCommands

	
subcommand = 'probs'

	

	
help_text = 'Calculates color and state probabilities via tracing.'

	

	
default_kinetics_file = 'direct.h5'

	

	
description = 'Calculate average populations and associated errors in state populations from\nweighted ensemble data. Bin assignments, including macrostate definitions,\nare required. (See "w_assign --help" for more information).\n\n---\nOutput format\n---\n\nThe output file (-o/--output, usually "direct.h5") contains the following\ndataset:\n\n /avg_state_probs [state]\n (Structured -- see below) Population of each state across entire\n range specified.\n\n /avg_color_probs [state]\n (Structured -- see below) Population of each ensemble across entire\n range specified.\n\nIf --evolution-mode is specified, then the following additional datasets are\navailable:\n\n /state_pop_evolution [window][state]\n (Structured -- see below). State populations based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\n /color_prob_evolution [window][state]\n (Structured -- see below). Ensemble populations based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\nThe structure of these datasets is as follows:\n\n iter_start\n (Integer) Iteration at which the averaging window begins (inclusive).\n\n iter_stop\n (Integer) Iteration at which the averaging window ends (exclusive).\n\n expected\n (Floating-point) Expected (mean) value of the observable as evaluated within\n this window, in units of inverse tau.\n\n ci_lbound\n (Floating-point) Lower bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n ci_ubound\n (Floating-point) Upper bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n stderr\n (Floating-point) The standard error of the mean of the observable\n within this window, in units of inverse tau.\n\n corr_len\n (Integer) Correlation length of the observable within this window, in units\n of tau.\n\nEach of these datasets is also stamped with a number of attributes:\n\n mcbs_alpha\n (Floating-point) Alpha value of confidence intervals. (For example,\n *alpha=0.05* corresponds to a 95% confidence interval.)\n\n mcbs_nsets\n (Integer) Number of bootstrap data sets used in generating confidence\n intervals.\n\n mcbs_acalpha\n (Floating-point) Alpha value for determining correlation lengths.\n\n\n---\nCommand-line options\n---\n'

	

	
calculate_state_populations(pops)

	

	
w_stateprobs()

	

	
go()

	

	
class westpa.cli.tools.w_direct.DAll(parent)

	Bases: DStateProbs, DKinAvg, DKinetics

	
subcommand = 'all'

	

	
help_text = 'Runs the full suite, including the tracing of events.'

	

	
default_kinetics_file = 'direct.h5'

	

	
description = 'A convenience function to run init/kinetics/probs. Bin assignments,\nincluding macrostate definitions, are required. (See\n"w_assign --help" for more information).\n\nFor more information on the individual subcommands this subs in for, run\nw_direct {init/kinetics/probs} --help.\n\n---\nCommand-line options\n---\n'

	

	
go()

	

	
class westpa.cli.tools.w_direct.DAverage(parent)

	Bases: DStateProbs, DKinAvg

	
subcommand = 'average'

	

	
help_text = 'Averages and returns fluxes, rates, and color/state populations.'

	

	
default_kinetics_file = 'direct.h5'

	

	
description = 'A convenience function to run kinetics/probs. Bin assignments,\nincluding macrostate definitions, are required. (See\n"w_assign --help" for more information).\n\nFor more information on the individual subcommands this subs in for, run\nw_direct {kinetics/probs} --help.\n\n---\nCommand-line options\n---\n'

	

	
go()

	

	
class westpa.cli.tools.w_direct.WDirect

	Bases: WESTMasterCommand, WESTParallelTool

	
prog = 'w_direct'

	

	
subcommands = [<class 'westpa.cli.tools.w_direct.DKinetics'>, <class 'westpa.cli.tools.w_direct.DAverage'>, <class 'westpa.cli.tools.w_direct.DKinAvg'>, <class 'westpa.cli.tools.w_direct.DStateProbs'>, <class 'westpa.cli.tools.w_direct.DAll'>]

	

	
subparsers_title = 'direct kinetics analysis schemes'

	

	
westpa.cli.tools.w_direct.entry_point()

	

w_select

usage:

w_select [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH] [-W WEST_H5FILE] [--first-iter N_ITER]
 [--last-iter N_ITER] [-p MODULE.FUNCTION] [-v] [-a] [-o OUTPUT]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Select dynamics segments matching various criteria. This requires a
user-provided prediate function. By default, only matching segments are
stored. If the -a/–include-ancestors option is given, then matching segments
and their ancestors will be stored.

Predicate function

Segments are selected based on a predicate function, which must be callable
as predicate(n_iter, iter_group) and return a collection of segment IDs
matching the predicate in that iteration.

The predicate may be inverted by specifying the -v/–invert command-line
argument.

Output format

The output file (-o/–output, by default “select.h5”) contains the following
datasets:

``/n_iter`` [iteration]
 (Integer) Iteration numbers for each entry in other datasets.

``/n_segs`` [iteration]
 (Integer) Number of segment IDs matching the predicate (or inverted
 predicate, if -v/--invert is specified) in the given iteration.

``/seg_ids`` [iteration][segment]
 (Integer) Matching segments in each iteration. For an iteration
 ``n_iter``, only the first ``n_iter`` entries are valid. For example,
 the full list of matching seg_ids in the first stored iteration is
 ``seg_ids[0][:n_segs[0]]``.

``/weights`` [iteration][segment]
 (Floating-point) Weights for each matching segment in ``/seg_ids``.

Command-line arguments

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks that
 have very large requests/response. Default: no limit.

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).

selection options:

-p MODULE.FUNCTION, --predicate-function MODULE.FUNCTION
 Use the given predicate function to match segments. This function should take an
 iteration number and the HDF5 group corresponding to that iteration and return a
 sequence of seg_ids matching the predicate, as in ``match_predicate(n_iter,
 iter_group)``.
-v, --invert Invert the match predicate.
-a, --include-ancestors
 Include ancestors of matched segments in output.

	output options:
	
	-o OUTPUT, --output OUTPUT

	Write output to OUTPUT (default: select.h5).

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work managers
 are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option. Use
 0 for a dedicated server. (Ignored by work managers which do not support this
 option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a deprecated
 synonym for "master" and "client" is a deprecated synonym for "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g. /tmp);
 on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read this
 file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting in
 coordinating the communication of other nodes to choose ports randomly, writing
 that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic toward
 the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result) traffic
 from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker in
 WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

westpa.cli.tools.w_select module

	
class westpa.cli.tools.w_select.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_select.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_select.IterRangeSelection(data_manager=None)

	Bases: WESTToolComponent

Select and record limits on iterations used in analysis and/or reporting.
This class provides both the user-facing command-line options and parsing, and
the application-side API for recording limits in HDF5.

HDF5 datasets calculated based on a restricted set of iterations should be tagged
with the following attributes:

	first_iter
	The first iteration included in the calculation.

	last_iter
	One past the last iteration included in the calculation.

	iter_step
	Blocking or sampling period for iterations included in the calculation.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args, override_iter_start=None, override_iter_stop=None, default_iter_step=1)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
iter_block_iter()

	Return an iterable of (block_start,block_end) over the blocks of iterations
selected by –first-iter/–last-iter/–step-iter.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter)
selected by –first-iter/–last-iter/–step-iter.

	
record_data_iter_range(h5object, iter_start=None, iter_stop=None)

	Store attributes iter_start and iter_stop on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data at least for the iteration range specified.

	
check_data_iter_range_equal(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data exactly for the iteration range specified.

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride (in other words, the given iter_step is a multiple of the stride with
which data was recorded).

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, iter_start=None, iter_stop=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(iter_start=None, iter_stop=None, iter_step=None, dtype=None)

	Return a sequence for the given iteration numbers and stride, filling
in missing values from those stored on self. The smallest data type capable of
holding iter_stop is returned unless otherwise specified using the dtype
argument.

	
class westpa.cli.tools.w_select.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
westpa.cli.tools.w_select.seg_id_dtype

	alias of int64

	
westpa.cli.tools.w_select.n_iter_dtype

	alias of uint32

	
westpa.cli.tools.w_select.weight_dtype

	alias of float64

	
westpa.cli.tools.w_select.get_object(object_name, path=None)

	Attempt to load the given object, using additional path information if given.

	
class westpa.cli.tools.w_select.WSelectTool

	Bases: WESTParallelTool

	
prog = 'w_select'

	

	
description = 'Select dynamics segments matching various criteria. This requires a\nuser-provided prediate function. By default, only matching segments are\nstored. If the -a/--include-ancestors option is given, then matching segments\nand their ancestors will be stored.\n\n\n---\nPredicate function\n---\n\nSegments are selected based on a predicate function, which must be callable\nas ``predicate(n_iter, iter_group)`` and return a collection of segment IDs\nmatching the predicate in that iteration.\n\nThe predicate may be inverted by specifying the -v/--invert command-line\nargument.\n\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "select.h5") contains the following\ndatasets:\n\n ``/n_iter`` [iteration]\n *(Integer)* Iteration numbers for each entry in other datasets.\n\n ``/n_segs`` [iteration]\n *(Integer)* Number of segment IDs matching the predicate (or inverted\n predicate, if -v/--invert is specified) in the given iteration.\n\n ``/seg_ids`` [iteration][segment]\n *(Integer)* Matching segments in each iteration. For an iteration\n ``n_iter``, only the first ``n_iter`` entries are valid. For example,\n the full list of matching seg_ids in the first stored iteration is\n ``seg_ids[0][:n_segs[0]]``.\n\n ``/weights`` [iteration][segment]\n *(Floating-point)* Weights for each matching segment in ``/seg_ids``.\n\n\n---\nCommand-line arguments\n---\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
westpa.cli.tools.w_select.entry_point()

	

w_states

usage:

w_states [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--show | --append | --replace] [--bstate-file BSTATE_FILE] [--bstate BSTATES]
 [--tstate-file TSTATE_FILE] [--tstate TSTATES]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Display or manipulate basis (initial) or target (recycling) states for a WEST simulation. By default,
states are displayed (or dumped to files). If --replace is specified, all basis/target states are
replaced for the next iteration. If --append is specified, the given target state(s) are appended to
the list for the next iteration. Appending basis states is not permitted, as this would require
renormalizing basis state probabilities in ways that may be error-prone. Instead, use w_states --show
--bstate-file=bstates.txt and then edit the resulting bstates.txt file to include the new desired
basis states, then use w_states --replace --bstate-file=bstates.txt to update the WEST HDF5 file
appropriately.

optional arguments:

-h, --help show this help message and exit
--bstate-file BSTATE_FILE
 Read (--append/--replace) or write (--show) basis state names, probabilities, and
 data references from/to BSTATE_FILE.
--bstate BSTATES Add the given basis state (specified as a string 'label,probability[,auxref]') to
 the list of basis states (after those specified in --bstate-file, if any). This
 argument may be specified more than once, in which case the given states are
 appended in the order they are given on the command line.
--tstate-file TSTATE_FILE
 Read (--append/--replace) or write (--show) target state names and representative
 progress coordinates from/to TSTATE_FILE
--tstate TSTATES Add the given target state (specified as a string 'label,pcoord0[,pcoord1[,...]]')
 to the list of target states (after those specified in the file given by
 --tstates-from, if any). This argument may be specified more than once, in which
 case the given states are appended in the order they appear on the command line.

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

modes of operation:

--show Display current basis/target states (or dump to files).
--append Append the given basis/target states to those currently in use.
--replace Replace current basis/target states with those specified.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work managers
 are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option. Use
 0 for a dedicated server. (Ignored by work managers which do not support this
 option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a deprecated
 synonym for "master" and "client" is a deprecated synonym for "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g. /tmp);
 on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read this
 file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting in
 coordinating the communication of other nodes to choose ports randomly, writing
 that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic toward
 the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result) traffic
 from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker in
 WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

westpa.cli.core.w_states module

	
westpa.cli.core.w_states.make_work_manager()

	Using cues from the environment, instantiate a pre-configured work manager.

	
class westpa.cli.core.w_states.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.cli.core.w_states.BasisState(label, probability, pcoord=None, auxref=None, state_id=None)

	Bases: object

Describes an basis (micro)state. These basis states are used to generate
initial states for new trajectories, either at the beginning of the simulation
(i.e. at w_init) or due to recycling.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	probability – Probability of this state to be selected when creating a
new trajectory.

	pcoord – The representative progress coordinate of this state.

	auxref – A user-provided (string) reference for locating data associated
with this state (usually a filesystem path).

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile)

	Read a file defining basis states. Each line defines a state, and contains a label, the probability,
and optionally a data reference, separated by whitespace, as in:

unbound 1.0

or:

unbound_0 0.6 state0.pdb
unbound_1 0.4 state1.pdb

	
as_numpy_record()

	Return the data for this state as a numpy record array.

	
class westpa.cli.core.w_states.TargetState(label, pcoord, state_id=None)

	Bases: object

Describes a target state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	pcoord – The representative progress coordinate of this state.

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile, dtype)

	Read a file defining target states. Each line defines a state, and contains a label followed
by a representative progress coordinate value, separated by whitespace, as in:

bound 0.02

for a single target and one-dimensional progress coordinates or:

bound 2.7 0.0
drift 100 50.0

for two targets and a two-dimensional progress coordinate.

	
westpa.cli.core.w_states.entry_point()

	

	
westpa.cli.core.w_states.initialize(mode, bstates, _bstate_file, tstates, _tstate_file)

	

w_eddist

usage:

w_eddist [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH] [-b BINEXPR] [-C] [--loose] --istate ISTATE
 --fstate FSTATE [--first-iter ITER_START] [--last-iter ITER_STOP] [-k KINETICS]
 [-o OUTPUT] [--serial | --parallel | --work-manager WORK_MANAGER]
 [--n-workers N_WORKERS] [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE]
 [--zmq-write-host-info INFO_FILE] [--zmq-read-host-info INFO_FILE]
 [--zmq-upstream-rr-endpoint ENDPOINT] [--zmq-upstream-ann-endpoint ENDPOINT]
 [--zmq-downstream-rr-endpoint ENDPOINT] [--zmq-downstream-ann-endpoint ENDPOINT]
 [--zmq-master-heartbeat MASTER_HEARTBEAT] [--zmq-worker-heartbeat WORKER_HEARTBEAT]
 [--zmq-timeout-factor FACTOR] [--zmq-startup-timeout STARTUP_TIMEOUT]
 [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Calculate time-resolved transition-event duration distribution from kinetics results

Source data

Source data is collected from the results of ‘w_kinetics trace’ (see w_kinetics trace –help for
more information on generating this dataset).

Histogram binning

By default, histograms are constructed with 100 bins in each dimension. This
can be overridden by specifying -b/–bins, which accepts a number of different
kinds of arguments:

a single integer N
 N uniformly spaced bins will be used in each dimension.

a sequence of integers N1,N2,... (comma-separated)
 N1 uniformly spaced bins will be used for the first dimension, N2 for the
 second, and so on.

a list of lists [[B11, B12, B13, ...], [B21, B22, B23, ...], ...]
 The bin boundaries B11, B12, B13, ... will be used for the first dimension,
 B21, B22, B23, ... for the second dimension, and so on. These bin
 boundaries need not be uniformly spaced. These expressions will be
 evaluated with Python's ``eval`` construct, with ``np`` available for
 use [e.g. to specify bins using np.arange()].

The first two forms (integer, list of integers) will trigger a scan of all
data in each dimension in order to determine the minimum and maximum values,
which may be very expensive for large datasets. This can be avoided by
explicitly providing bin boundaries using the list-of-lists form.

Note that these bins are NOT at all related to the bins used to drive WE
sampling.

Output format

The output file produced (specified by -o/–output, defaulting to “pdist.h5”)
may be fed to plothist to generate plots (or appropriately processed text or
HDF5 files) from this data. In short, the following datasets are created:

``histograms``
 Normalized histograms. The first axis corresponds to iteration, and
 remaining axes correspond to dimensions of the input dataset.

``/binbounds_0``
 Vector of bin boundaries for the first (index 0) dimension. Additional
 datasets similarly named (/binbounds_1, /binbounds_2, ...) are created
 for additional dimensions.

``/midpoints_0``
 Vector of bin midpoints for the first (index 0) dimension. Additional
 datasets similarly named are created for additional dimensions.

``n_iter``
 Vector of iteration numbers corresponding to the stored histograms (i.e.
 the first axis of the ``histograms`` dataset).

Subsequent processing

The output generated by this program (-o/–output, default “pdist.h5”) may be
plotted by the plothist program. See plothist --help for more
information.

Parallelization

This tool supports parallelized binning, including reading of input data.
Parallel processing is the default. For simple cases (reading pre-computed
input data, modest numbers of segments), serial processing (–serial) may be
more efficient.

Command-line options

optional arguments:

-h, --help show this help message and exit
-b BINEXPR, --bins BINEXPR
 Use BINEXPR for bins. This may be an integer, which will be used for each
 dimension of the progress coordinate; a list of integers (formatted as
 [n1,n2,...]) which will use n1 bins for the first dimension, n2 for the second
 dimension, and so on; or a list of lists of boundaries (formatted as [[a1, a2,
 ...], [b1, b2, ...], ...]), which will use [a1, a2, ...] as bin boundaries for
 the first dimension, [b1, b2, ...] as bin boundaries for the second dimension,
 and so on. (Default: 100 bins in each dimension.)
-C, --compress Compress histograms. May make storage of higher-dimensional histograms more
 tractable, at the (possible extreme) expense of increased analysis time.
 (Default: no compression.)
--loose Ignore values that do not fall within bins. (Risky, as this can make buggy bin
 boundaries appear as reasonable data. Only use if you are sure of your bin
 boundary specification.)
--istate ISTATE Initial state defining transition event
--fstate FSTATE Final state defining transition event

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

	parallelization options:
	
	--max-queue-length MAX_QUEUE_LENGTH

	Maximum number of tasks that can be queued. Useful to limit RAM use for tasks
that have very large requests/response. Default: no limit.

iteration range options:

--first-iter ITER_START
 Iteration to begin analysis (default: 1)
--last-iter ITER_STOP
 Iteration to end analysis

input/output options:

-k KINETICS, --kinetics KINETICS
 Populations and transition rates (including evolution) are stored in KINETICS
 (default: kintrace.h5).
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: eddist.h5).

	parallelization options:
	
	--serial

	run in serial mode

	--parallel

	run in parallel mode (using processes)

	--work-manager WORK_MANAGER

	use the given work manager for parallel task distribution. Available work
managers are (‘serial’, ‘threads’, ‘processes’, ‘zmq’); default is ‘processes’

	--n-workers N_WORKERS

	Use up to N_WORKERS on this host, for work managers which support this option.
Use 0 for a dedicated server. (Ignored by work managers which do not support
this option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a
 deprecated synonym for "master" and "client" is a deprecated synonym for
 "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g.
 /tmp); on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read
 this file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting
 in coordinating the communication of other nodes to choose ports randomly,
 writing that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic
 toward the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result)
 traffic from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker
 in WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

westpa.cli.tools.w_eddist module

	
class westpa.cli.tools.w_eddist.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_eddist.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
westpa.cli.tools.w_eddist.histnd(values, binbounds, weights=1.0, out=None, binbound_check=True, ignore_out_of_range=False)

	Generate an N-dimensional PDF (or contribution to a PDF) from the given values.
binbounds is a list of arrays of boundary values, with one entry for each
dimension (values must have as many columns as there are entries in binbounds)
weight, if provided, specifies the weight each value contributes to the
histogram; this may be a scalar (for equal weights for all values) or a vector of
the same length as values (for unequal weights). If binbound_check is True, then
the boundaries are checked for strict positive monotonicity; set to False to shave a few
microseconds if you know your bin boundaries to be monotonically increasing.

	
westpa.cli.tools.w_eddist.normhistnd(hist, binbounds)

	Normalize the N-dimensional histogram hist with corresponding
bin boundaries binbounds. Modifies hist in place and returns
the normalization factor used.

	
class westpa.cli.tools.w_eddist.DurationDataset(dataset, mask, iter_start=1)

	Bases: object

A facade for the ‘dsspec’ dataclass that incorporates the mask into get_iter_data method

	
get_iter_data(n_iter)

	

	
westpa.cli.tools.w_eddist.isiterable(x)

	

	
class westpa.cli.tools.w_eddist.WEDDist

	Bases: WESTParallelTool

	
prog = 'w_eddist'

	

	
description = 'Calculate time-resolved transition-event duration distribution from kinetics results\n\n\n---\nSource data\n---\n\nSource data is collected from the results of \'w_kinetics trace\' (see w_kinetics trace --help for\nmore information on generating this dataset).\n\n\n---\nHistogram binning\n---\n\nBy default, histograms are constructed with 100 bins in each dimension. This\ncan be overridden by specifying -b/--bins, which accepts a number of different\nkinds of arguments:\n\n a single integer N\n N uniformly spaced bins will be used in each dimension.\n\n a sequence of integers N1,N2,... (comma-separated)\n N1 uniformly spaced bins will be used for the first dimension, N2 for the\n second, and so on.\n\n a list of lists [[B11, B12, B13, ...], [B21, B22, B23, ...], ...]\n The bin boundaries B11, B12, B13, ... will be used for the first dimension,\n B21, B22, B23, ... for the second dimension, and so on. These bin\n boundaries need not be uniformly spaced. These expressions will be\n evaluated with Python\'s ``eval`` construct, with ``np`` available for\n use [e.g. to specify bins using np.arange()].\n\nThe first two forms (integer, list of integers) will trigger a scan of all\ndata in each dimension in order to determine the minimum and maximum values,\nwhich may be very expensive for large datasets. This can be avoided by\nexplicitly providing bin boundaries using the list-of-lists form.\n\nNote that these bins are *NOT* at all related to the bins used to drive WE\nsampling.\n\n\n---\nOutput format\n---\n\nThe output file produced (specified by -o/--output, defaulting to "pdist.h5")\nmay be fed to plothist to generate plots (or appropriately processed text or\nHDF5 files) from this data. In short, the following datasets are created:\n\n ``histograms``\n Normalized histograms. The first axis corresponds to iteration, and\n remaining axes correspond to dimensions of the input dataset.\n\n ``/binbounds_0``\n Vector of bin boundaries for the first (index 0) dimension. Additional\n datasets similarly named (/binbounds_1, /binbounds_2, ...) are created\n for additional dimensions.\n\n ``/midpoints_0``\n Vector of bin midpoints for the first (index 0) dimension. Additional\n datasets similarly named are created for additional dimensions.\n\n ``n_iter``\n Vector of iteration numbers corresponding to the stored histograms (i.e.\n the first axis of the ``histograms`` dataset).\n\n\n---\nSubsequent processing\n---\n\nThe output generated by this program (-o/--output, default "pdist.h5") may be\nplotted by the ``plothist`` program. See ``plothist --help`` for more\ninformation.\n\n\n---\nParallelization\n---\n\nThis tool supports parallelized binning, including reading of input data.\nParallel processing is the default. For simple cases (reading pre-computed\ninput data, modest numbers of segments), serial processing (--serial) may be\nmore efficient.\n\n\n---\nCommand-line options\n---\n\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
static parse_binspec(binspec)

	

	
construct_bins(bins)

	Construct bins according to bins, which may be:

	A scalar integer (for that number of bins in each dimension)

	A sequence of integers (specifying number of bins for each dimension)

	A sequence of sequences of bin boundaries (specifying boundaries for each dimension)

Sets self.binbounds to a list of arrays of bin boundaries appropriate for passing to
fasthist.histnd, along with self.midpoints to the midpoints of the bins.

	
scan_data_shape()

	

	
scan_data_range()

	Scan input data for range in each dimension. The number of dimensions is determined
from the shape of the progress coordinate as of self.iter_start.

	
construct_histogram()

	Construct a histogram using bins previously constructed with construct_bins().
The time series of histogram values is stored in histograms.
Each histogram in the time series is normalized.

	
westpa.cli.tools.w_eddist.entry_point()

	

w_ntop

usage:

w_ntop [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-W WEST_H5FILE]
 [--first-iter N_ITER] [--last-iter N_ITER] [-a ASSIGNMENTS] [-n COUNT] [-t TIMEPOINT]
 [--highweight | --lowweight | --random] [-o OUTPUT]

Select walkers from bins . An assignment file mapping walkers to
bins at each timepoint is required (see``w_assign –help`` for further
information on generating this file). By default, high-weight walkers are
selected (hence the name w_ntop: select the N top-weighted walkers from
each bin); however, minimum weight walkers and randomly-selected walkers
may be selected instead.

Output format

The output file (-o/–output, by default “ntop.h5”) contains the following
datasets:

``/n_iter`` [iteration]
 (Integer) Iteration numbers for each entry in other datasets.

``/n_segs`` [iteration][bin]
 (Integer) Number of segments in each bin/state in the given iteration.
 This will generally be the same as the number requested with
 ``--n/--count`` but may be smaller if the requested number of walkers
 does not exist.

``/seg_ids`` [iteration][bin][segment]
 (Integer) Matching segments in each iteration for each bin.
 For an iteration ``n_iter``, only the first ``n_iter`` entries are
 valid. For example, the full list of matching seg_ids in bin 0 in the
 first stored iteration is ``seg_ids[0][0][:n_segs[0]]``.

``/weights`` [iteration][bin][segment]
 (Floating-point) Weights for each matching segment in ``/seg_ids``.

Command-line arguments

optional arguments:

-h, --help show this help message and exit
--highweight Select COUNT highest-weight walkers from each bin.
--lowweight Select COUNT lowest-weight walkers from each bin.
--random Select COUNT walkers randomly from each bin.

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).

input options:

-a ASSIGNMENTS, --assignments ASSIGNMENTS
 Use assignments from the given ASSIGNMENTS file (default: assign.h5).

selection options:

-n COUNT, --count COUNT
 Select COUNT walkers from each iteration for each bin (default: 1).
-t TIMEPOINT, --timepoint TIMEPOINT
 Base selection on the given TIMEPOINT within each iteration. Default (-1)
 corresponds to the last timepoint.

output options:

-o OUTPUT, --output OUTPUT
 Write output to OUTPUT (default: ntop.h5).

westpa.cli.tools.w_ntop module

	
class westpa.cli.tools.w_ntop.WESTTool

	Bases: WESTToolComponent

Base class for WEST command line tools

	
prog = None

	

	
usage = None

	

	
description = None

	

	
epilog = None

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
make_parser(prog=None, usage=None, description=None, epilog=None, args=None)

	

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then call self.go()

	
class westpa.cli.tools.w_ntop.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_ntop.IterRangeSelection(data_manager=None)

	Bases: WESTToolComponent

Select and record limits on iterations used in analysis and/or reporting.
This class provides both the user-facing command-line options and parsing, and
the application-side API for recording limits in HDF5.

HDF5 datasets calculated based on a restricted set of iterations should be tagged
with the following attributes:

	first_iter
	The first iteration included in the calculation.

	last_iter
	One past the last iteration included in the calculation.

	iter_step
	Blocking or sampling period for iterations included in the calculation.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args, override_iter_start=None, override_iter_stop=None, default_iter_step=1)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
iter_block_iter()

	Return an iterable of (block_start,block_end) over the blocks of iterations
selected by –first-iter/–last-iter/–step-iter.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter)
selected by –first-iter/–last-iter/–step-iter.

	
record_data_iter_range(h5object, iter_start=None, iter_stop=None)

	Store attributes iter_start and iter_stop on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data at least for the iteration range specified.

	
check_data_iter_range_equal(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data exactly for the iteration range specified.

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride (in other words, the given iter_step is a multiple of the stride with
which data was recorded).

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, iter_start=None, iter_stop=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(iter_start=None, iter_stop=None, iter_step=None, dtype=None)

	Return a sequence for the given iteration numbers and stride, filling
in missing values from those stored on self. The smallest data type capable of
holding iter_stop is returned unless otherwise specified using the dtype
argument.

	
class westpa.cli.tools.w_ntop.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
westpa.cli.tools.w_ntop.seg_id_dtype

	alias of int64

	
westpa.cli.tools.w_ntop.n_iter_dtype

	alias of uint32

	
westpa.cli.tools.w_ntop.weight_dtype

	alias of float64

	
westpa.cli.tools.w_ntop.assignments_list_to_table(nsegs, nbins, assignments)

	Convert a list of bin assignments (integers) to a boolean table indicating indicating
if a given segment is in a given bin

	
class westpa.cli.tools.w_ntop.WNTopTool

	Bases: WESTTool

	
prog = 'w_ntop'

	

	
description = 'Select walkers from bins . An assignment file mapping walkers to\nbins at each timepoint is required (see``w_assign --help`` for further\ninformation on generating this file). By default, high-weight walkers are\nselected (hence the name ``w_ntop``: select the N top-weighted walkers from\neach bin); however, minimum weight walkers and randomly-selected walkers\nmay be selected instead.\n\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "ntop.h5") contains the following\ndatasets:\n\n ``/n_iter`` [iteration]\n *(Integer)* Iteration numbers for each entry in other datasets.\n\n ``/n_segs`` [iteration][bin]\n *(Integer)* Number of segments in each bin/state in the given iteration.\n This will generally be the same as the number requested with\n ``--n/--count`` but may be smaller if the requested number of walkers\n does not exist.\n\n ``/seg_ids`` [iteration][bin][segment]\n *(Integer)* Matching segments in each iteration for each bin.\n For an iteration ``n_iter``, only the first ``n_iter`` entries are\n valid. For example, the full list of matching seg_ids in bin 0 in the\n first stored iteration is ``seg_ids[0][0][:n_segs[0]]``.\n\n ``/weights`` [iteration][bin][segment]\n *(Floating-point)* Weights for each matching segment in ``/seg_ids``.\n\n\n---\nCommand-line arguments\n---\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
westpa.cli.tools.w_ntop.entry_point()

	

w_multi_west

The w_multi_west tool combines multiple WESTPA simulations into a single aggregate simulation to facilitate the analysis of the set of simulations. In particular, the tool creates a single west.h5 file that contains all of the data from the west.h5 files of the individual simulations. Each iteration x in the new file contains all of the segments from iteration x from each of the set of simulation, all normalized to the total weight.

Overview

usage:

w_multi_west [-h] [-m master] [-n sims] [--quiet | --verbose | --debug] [--version]
 [-W WEST_H5FILE] [-a aux] [--auxall] [--ibstates]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

optional arguments:

-h, --help show this help message and exit

	General options::
	
	-m, --master directory

	Master path of simulations where all the smaller simulations are stored
(default: Current Directory)

	-n, --sims n

	Number of simulation directories. Assumes leading zeros. (default: 0)

	--quiet

	emit only essential information

	--verbose

	emit extra information

	--version

	show program’s version number and exit

Command-Line Options

See the general command-line tool reference for more
information on the general options.

Input/output options

These arguments allow the user to specify where to read input simulation result
data and where to output calculated progress coordinate probability
distribution data.

Both input and output files are hdf5 format:

-W, --west, --WEST_H5FILE file
 The name of the main .h5 file inside each simulation directory. (Default: west.h5)

-o, --output file
 Store this tool's output in file. (Default: multi.h5)

-a, --aux auxdata
 Name of additional auxiliary dataset to be combined. Can be called multiple times.
 (Default: None)

-aa, --auxall
 Combine all auxiliary datsets as labeled in ``west.h5`` in folder 01. (Default: False)

-nr, --no-reweight
 Do not perform reweighting. (Default: False)

-ib, --ibstates
 Attempt to combine ``ibstates`` dataset if the basis states are identical across
 all simulations. Needed when tracing with ``westpa.analysis``. (Default: False)

Examples

If you have five simulations, set up your directory such that you
have five directories are named numerically with leading zeroes, and each
directory contains a west.h5 file. For this example, each west.h5
also contains an auxiliary dataset called RMSD. If you run ls, you
will see the following output:

01 02 03 04 05

To run the w_multi_west tool, do the following:

w_multi_west.py -m . -n 5 --aux=RMSD

If you used any custom WESTSystem, include that in the directory where you
run the code.

To proceed in analyzing the aggregated simulation data as a single
simulation, rename the output file multi.h5 to west.h5.

westpa.cli.tools.w_multi_west module

	
class westpa.cli.tools.w_multi_west.WESTTool

	Bases: WESTToolComponent

Base class for WEST command line tools

	
prog = None

	

	
usage = None

	

	
description = None

	

	
epilog = None

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
make_parser(prog=None, usage=None, description=None, epilog=None, args=None)

	

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then call self.go()

	
westpa.cli.tools.w_multi_west.n_iter_dtype

	alias of uint32

	
class westpa.cli.tools.w_multi_west.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.w_multi_west.WESTMultiTool(wm_env=None)

	Bases: WESTParallelTool

Base class for command-line tools which work with multiple simulations. Automatically parses for
and gives commands to load multiple files.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
parse_from_yaml(yamlfilepath)

	Parse options from YAML input file. Command line arguments take
precedence over options specified in the YAML hierarchy.
TODO: add description on how YAML files should be constructed.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
exception NoSimulationsException

	Bases: Exception

	
generate_file_list(key_list)

	A convenience function which takes in a list of keys that are filenames, and returns a dictionary
which contains all the individual files loaded inside of a dictionary keyed to the filename.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
westpa.cli.tools.w_multi_west.get_bin_mapper(we_h5file, hashval)

	Look up the given hash value in the binning table, unpickling and returning the corresponding
bin mapper if available, or raising KeyError if not.

	
westpa.cli.tools.w_multi_west.create_idtype_array(input_array)

	Return a new array with the new istate_dtype while preserving old data.

	
class westpa.cli.tools.w_multi_west.WMultiWest

	Bases: WESTMultiTool

	
prog = 'w_multi_west'

	

	
description = 'Tool designed to combine multiple WESTPA simulations while accounting for\nreweighting.\n---\nCommand-line options\n---\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
open_files()

	

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
total_number_of_walkers()

	

	
go()

	Perform the analysis associated with this tool.

	
westpa.cli.tools.w_multi_west.entry_point()

	

w_red

usage:

w_red [-h] [-r RCFILE] [--quiet] [--verbose] [--version] [--max-queue-length MAX_QUEUE_LENGTH]
 [--debug] [--terminal]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

optional arguments:

-h, --help show this help message and exit

	general options:
	
	-r RCFILE, --rcfile RCFILE

	use RCFILE as the WEST run-time configuration file (default: west.cfg)

	--quiet

	emit only essential information

	--verbose

	emit extra information

	--version

	show program’s version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks that
 have very large requests/response. Default: no limit.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER

westpa.cli.tools.w_red module

	
westpa.cli.tools.w_red.H5File

	alias of File

	
class westpa.cli.tools.w_red.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_red.DurationCorrector(durations, weights, dtau, maxduration=None)

	Bases: object

	
static from_kinetics_file(directh5, istate, fstate, dtau, n_iters=None)

	

	
property event_duration_histogram

	

	
property cumulative_event_duration_histogram

	

	
correction(iters, freqs=None)

	Return the correction factor

t=theta tau=t |

| | |

| | ~ |

| | f(tau) dtau dt | * maxduration

| | |

t=0 tau=0 |

|_ _|

	where
	~` ^
f(tau) is proportional to f(tau)/(theta-tau), and is normalized to

^

integrate to 1, and f(tau) is sum of the weights of walkers with
duration time tau.

	
westpa.cli.tools.w_red.get_raw_rates(directh5, istate, fstate, n_iters=None)

	

	
westpa.cli.tools.w_red.calc_avg_rate(directh5_path, istate, fstate, **kwargs)

	Return the raw or RED-corrected rate constant with the confidence interval.

	Parameters:

	
	nstiter (duration of each iteration (number of steps))

	ntpr (report inteval (number of steps))

	
westpa.cli.tools.w_red.calc_rates(directh5_path, istate, fstate, **kwargs)

	Return the raw and RED-corrected rate constants vs. iterations.
This code is faster than calling calc_rate() iteratively

	Parameters:

	
	nstiter (duration of each iteration (number of steps))

	ntpr (report inteval (number of steps))

	
class westpa.cli.tools.w_red.RateCalculator(directh5, istate, fstate, assignh5=None, **kwargs)

	Bases: object

	
property conditional_fluxes

	

	
property populations

	

	
property tau

	

	
property dtau

	

	
property istate

	

	
property fstate

	

	
property n_iters

	

	
calc_rate(i_iter=None, red=False, **kwargs)

	

	
calc_rates(n_iters=None, **kwargs)

	

	
class westpa.cli.tools.w_red.WRed

	Bases: WESTParallelTool

	
prog = 'w_red'

	

	
description = 'Apply the RED scheme to estimate steady-state WE fluxes from\nshorter trajectories.\n\n---\nSource data\n---\n\nSource data is provided as a w_ipa "scheme" which is typically defined\nin the west.cfg file. For instance, if a user wishes to estimate RED\nfluxes for a scheme named "DEFAULT" that argument would be provided\nto w_red and WRed would estimate RED fluxes based off of the data\ncontained in the assign.h5 and direct.h5 files in ANALYSIS/DEFAULT.\n\n'

	

	
go()

	Perform the analysis associated with this tool.

	
westpa.cli.tools.w_red.entry_point()

	

plothist

Use the plothist tool to plot the results of w_pdist. This tool uses
an hdf5 file as its input (i.e. the output of another analysis tool), and
outputs a pdf image.

The plothist tool operates in one of three (mutually exclusive)
plotting modes:

	evolution: Plots the relevant data as a time evolution over
specified number of simulation iterations

	average: Plots the relevant data as a time average over a
specified number of iterations

	instant: Plots the relevant data for a single specified
iteration

Overview

The basic usage, independent of plotting mode, is as follows:

usage:

| ``plothist [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]``
| `` {instant,average,evolution} input ...``

Note that the user must specify a plotting mode (i.e. ‘instant‘,
‘average‘, or ‘evolution‘) and an input file, input.

Therefore, this tool is always called as:

plothist mode input_file [``other``
``options``]

‘instant‘ mode

usage:

| ``plothist instant [-h] input [-o PLOT_OUTPUT]``
| `` [--hdf5-output HDF5_OUTPUT] [--text-output TEXT_OUTPUT]``
| `` [--title TITLE] [--range RANGE] [--linear | --energy | --log10]``
| `` [--iter N_ITER] ``
| `` [DIMENSION] [ADDTLDIM]``

‘average‘ mode

usage:

| ``plothist average [-h] input [-o PLOT_OUTPUT]``
| `` [--hdf5-output HDF5_OUTPUT] [--text-output TEXT_OUTPUT]``
| `` [--title TITLE] [--range RANGE] [--linear | --energy | --log10]``
| `` [--first-iter N_ITER] [--last-iter N_ITER] ``
| `` [DIMENSION] [ADDTLDIM]``

‘evolution‘ mode

usage:

| ``plothist evolution [-h] input [-o PLOT_OUTPUT]``
| `` [--hdf5-output HDF5_OUTPUT]``
| `` [--title TITLE] [--range RANGE] [--linear | --energy | --log10]``
| `` [--first-iter N_ITER] [--last-iter N_ITER]``
| `` [--step-iter STEP] ``
| `` [DIMENSION]``

Command-Line Options

See the command-line tool index for more
information on the general options.

Unless specified (as a Note in the command-line option description), the
command-line options below are shared for all three plotting modes

Input/output options

No matter the mode, an input hdf5 file must be specified. There are
three possible outputs that are mode or user-specified: A text file, an
hdf5 file, and a pdf image.

Specifying input file

	``input``
	Specify the input hdf5 file ‘’input. This is the output file
from a previous analysis tool (e.g. ‘pdist.h5’)

Output plot pdf file

	``-o ‘’plot_output’’, –plot_output ‘’plot_output’’``
	Specify the name of the pdf plot image output (Default:
‘hist.pdf’).
Note: You can suppress plotting entirely by specifying an empty string
as plot_output (i.e. -o '' or --plot_output '')

Additional output options

Note: plothist provides additional, optional arguments to output the
data points used to construct the plot:

	``–hdf5-output ‘’hdf5_output’’``
	Output plot data hdf5 file 'hdf5_output' (Default: No
hdf5 output file)

	``–text-output ‘’text_output’’``
	Output plot data as a text file named 'text_output'
(Default: No text output file)
Note: This option is only available for 1 dimensional histogram
plots (that is, 'average' and 'instant' modes only)

Plotting options

The following options allow the user to specify a plot title, the type
of plot (i.e. energy or probability distribution), whether to apply a
log transformation to the data, and the range of data values to include.

	``–title ‘’title’’ ``
	Optionally specify a title, ``title``, for the plot (Default:
No title)

	``–range ‘’<nowiki>’</nowiki>LB, UB<nowiki>’</nowiki>’’``
	Optionally specify the data range to be plotted as “LB, UB”
(e.g. ' --range "-1, 10" ' - note that the quotation marks are
necessary if specifying a negative bound). For 1 dimensional
histograms, the range affects the y axis. For 2 dimensional plots
(e.g. evolution plot with 1 dimensional progress coordinate), it
corresponds to the range of the color bar

Mutually exclusive plotting options

The following three options determine how the plotted data is
represented (Default: '--energy')

	``–energy ``
	Plots the probability distribution on an inverted natural log scale
(i.e. -ln[P(x)]), corresponding to the free energy (Default)

	``–linear ``
	Plots the probability distribution function as a linear scale

	``–log10 ``
	Plots the (base-10) logarithm of the probability distribution

Iteration selection options

Depending on plotting mode, you can select either a range or a single
iteration to plot.

``’instant’`` mode only:

	``–iter ‘’n_iter’’ ``
	Plot the distribution for iteration ''n_iter'' (Default:
Last completed iteration)

``’average’`` and ``’evolution’`` modes only:

	``–first-iter ‘’first_iter’’ ``
	Begin averaging or plotting at iteration ``first_iter``
(Default: 1)

	``–last-iter ‘’last_iter’’ ``
	Average or plot up to and including ``last_iter`` (Default:
Last completed iteration)

``’evolution’`` mode only:

	``–iter_step ‘’n_step’’ ``
	Average every ``n_step`` iterations together when plotting in
'evolution' mode (Default: 1 - i.e. plot each iteration)

Specifying progress coordinate dimension

For progress coordinates with dimensions greater than 1, you can specify
the dimension of the progress coordinate to use, the of progress
coordinate values to include, and the progress coordinate axis label
with a single positional argument:

	``dimension ``
	Specify 'dimension' as ‘int[:[LB,UB]:label]‘, where
‘int‘ specifies the dimension (starting at 0), and,
optionally, ‘LB,UB‘ specifies the lower and upper range
bounds, and/or ‘label‘ specifies the axis label (Default:
int = 0, full range, default label is ‘dimension int’; e.g
‘dimension 0’)

For 'average' and 'instant' modes, you can plot two dimensions
at once using a color map if this positional argument is specified:

	``addtl_dimension ``
	Specify the other dimension to include as 'addtl_dimension'

Examples

These examples assume the input file is created using w_pdist and is
named ‘pdist.h5’

Basic plotting

Plot the energy (-ln(P(x))) for the last iteration

plothist instant pdist.h5

Plot the evolution of the log10 of the probability distribution over all
iterations

``plothist evolution pdist.h5 –log10 ``

Plot the average linear probability distribution over all iterations

plothist average pdist.h5 --linear

Specifying progress coordinate

Plot the average probability distribution as the energy, label the
x-axis ‘pcoord’, over the entire range of the progress coordinate

plothist average pdist.h5 0::pcoord

Same as above, but only plot the energies for with progress coordinate
between 0 and 10

plothist average pdist.h5 '0:0,10:pcoord'

(Note: the quotes are needed if specifying a range that includes a
negative bound)

(For a simulation that uses at least 2 progress coordinates) plot the
probability distribution for the 5th iteration, representing the first
two progress coordinates as a heatmap

plothist instant pdist.h5 0 1 --iter 5 --linear

westpa.cli.tools.plothist module

	
class westpa.cli.tools.plothist.NonUniformImage(ax, *, interpolation='nearest', **kwargs)

	Bases: AxesImage

	Parameters:

	
	ax (~matplotlib.axes.Axes) – The axes the image will belong to.

	interpolation ({'nearest', 'bilinear'}, default: 'nearest') – The interpolation scheme used in the resampling.

	**kwargs – All other keyword arguments are identical to those of .AxesImage.

	
mouseover = False

	

	
make_image(renderer, magnification=1.0, unsampled=False)

	Normalize, rescale, and colormap this image’s data for rendering using
renderer, with the given magnification.

If unsampled is True, the image will not be scaled, but an
appropriate affine transformation will be returned instead.

	Returns:

	
	image ((M, N, 4) numpy.uint8 array) – The RGBA image, resampled unless unsampled is True.

	x, y (float) – The upper left corner where the image should be drawn, in pixel
space.

	trans (~matplotlib.transforms.Affine2D) – The affine transformation from image to pixel space.

	
set_data(x, y, A)

	Set the grid for the pixel centers, and the pixel values.

	Parameters:

	
	x (1D array-like) – Monotonic arrays of shapes (N,) and (M,), respectively, specifying
pixel centers.

	y (1D array-like) – Monotonic arrays of shapes (N,) and (M,), respectively, specifying
pixel centers.

	A (array-like) – (M, N) ~numpy.ndarray or masked array of values to be
colormapped, or (M, N, 3) RGB array, or (M, N, 4) RGBA array.

	
set_array(*args)

	Retained for backwards compatibility - use set_data instead.

	Parameters:

	A (array-like)

	
set_interpolation(s)

	
	Parameters:

	s ({'nearest', 'bilinear'} or None) – If None, use :rc:`image.interpolation`.

	
get_extent()

	Return the image extent as tuple (left, right, bottom, top).

	
set_filternorm(filternorm)

	Set whether the resize filter normalizes the weights.

See help for ~.Axes.imshow.

	Parameters:

	filternorm (bool)

	
set_filterrad(filterrad)

	Set the resize filter radius only applicable to some
interpolation schemes – see help for imshow

	Parameters:

	filterrad (positive float)

	
set_norm(norm)

	Set the normalization instance.

	Parameters:

	norm (.Normalize or str or None)

Notes

If there are any colorbars using the mappable for this norm, setting
the norm of the mappable will reset the norm, locator, and formatters
on the colorbar to default.

	
set_cmap(cmap)

	Set the colormap for luminance data.

	Parameters:

	cmap (.Colormap or str or None)

	
set(*, agg_filter=<UNSET>, alpha=<UNSET>, animated=<UNSET>, array=<UNSET>, clim=<UNSET>, clip_box=<UNSET>, clip_on=<UNSET>, clip_path=<UNSET>, cmap=<UNSET>, data=<UNSET>, extent=<UNSET>, filternorm=<UNSET>, filterrad=<UNSET>, gid=<UNSET>, in_layout=<UNSET>, interpolation=<UNSET>, interpolation_stage=<UNSET>, label=<UNSET>, mouseover=<UNSET>, norm=<UNSET>, path_effects=<UNSET>, picker=<UNSET>, rasterized=<UNSET>, resample=<UNSET>, sketch_params=<UNSET>, snap=<UNSET>, transform=<UNSET>, url=<UNSET>, visible=<UNSET>, zorder=<UNSET>)

	Set multiple properties at once.

Supported properties are

	Properties:
	agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: float or 2D array-like or None
animated: bool
array: unknown
clim: (vmin: float, vmax: float)
clip_box: ~matplotlib.transforms.BboxBase or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: unknown
data: unknown
extent: 4-tuple of float
figure: ~matplotlib.figure.Figure
filternorm: unknown
filterrad: unknown
gid: str
in_layout: bool
interpolation: {‘nearest’, ‘bilinear’} or None
interpolation_stage: {‘data’, ‘rgba’} or None
label: object
mouseover: bool
norm: unknown
path_effects: list of .AbstractPathEffect
picker: None or bool or float or callable
rasterized: bool
resample: bool or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: ~matplotlib.transforms.Transform
url: str
visible: bool
zorder: float

	
class westpa.cli.tools.plothist.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.plothist.WESTSubcommand(parent)

	Bases: WESTToolComponent

Base class for command-line tool subcommands. A little sugar for making this
more uniform.

	
subcommand = None

	

	
help_text = None

	

	
description = None

	

	
add_to_subparsers(subparsers)

	

	
go()

	

	
property work_manager

	The work manager for this tool. Raises AttributeError if this is not a parallel
tool.

	
westpa.cli.tools.plothist.normhistnd(hist, binbounds)

	Normalize the N-dimensional histogram hist with corresponding
bin boundaries binbounds. Modifies hist in place and returns
the normalization factor used.

	
westpa.cli.tools.plothist.get_object(object_name, path=None)

	Attempt to load the given object, using additional path information if given.

	
westpa.cli.tools.plothist.sum_except_along(array, axes)

	Reduce the given array by addition over all axes except those listed in the scalar or
iterable axes

	
class westpa.cli.tools.plothist.PlotHistBase(parent)

	Bases: WESTSubcommand

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
parse_dimspec(dimspec)

	

	
parse_range(rangespec)

	

	
class westpa.cli.tools.plothist.PlotSupports2D(parent)

	Bases: PlotHistBase

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.plothist.InstantPlotHist(parent)

	Bases: PlotSupports2D

	
subcommand = 'instant'

	

	
help_text = 'plot probability distribution for a single WE iteration'

	

	
description = 'Plot a probability distribution for a single WE iteration. The probability\ndistribution must have been previously extracted with ``w_pdist`` (or, at\nleast, must be compatible with the output format of ``w_pdist``; see\n``w_pdist --help`` for more information).\n'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
do_instant_plot_1d()

	Plot the histogram for iteration self.n_iter

	
do_instant_plot_2d()

	Plot the histogram for iteration self.n_iter

	
go()

	

	
class westpa.cli.tools.plothist.AveragePlotHist(parent)

	Bases: PlotSupports2D

	
subcommand = 'average'

	

	
help_text = 'plot average of a probability distribution over a WE simulation'

	

	
description = 'Plot a probability distribution averaged over multiple iterations. The\nprobability distribution must have been previously extracted with ``w_pdist``\n(or, at least, must be compatible with the output format of ``w_pdist``; see\n``w_pdist --help`` for more information).\n'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
do_average_plot_1d()

	Plot the average histogram for iterations self.iter_start to self.iter_stop

	
do_average_plot_2d()

	Plot the histogram for iteration self.n_iter

	
go()

	

	
class westpa.cli.tools.plothist.EvolutionPlotHist(parent)

	Bases: PlotHistBase

	
subcommand = 'evolution'

	

	
help_text = 'plot evolution of a probability distribution over the course of a WE simulation'

	

	
description = 'Plot a probability distribution as it evolves over iterations. The\nprobability distribution must have been previously extracted with ``w_pdist``\n(or, at least, must be compatible with the output format of ``w_pdist``; see\n``w_pdist --help`` for more information).\n'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
go()

	Plot the evolution of the histogram for iterations self.iter_start to self.iter_stop

	
class westpa.cli.tools.plothist.PlotHistTool

	Bases: WESTMasterCommand

	
prog = 'plothist'

	

	
subparsers_title = 'plotting modes'

	

	
subcommands = [<class 'westpa.cli.tools.plothist.InstantPlotHist'>, <class 'westpa.cli.tools.plothist.AveragePlotHist'>, <class 'westpa.cli.tools.plothist.EvolutionPlotHist'>]

	

	
description = 'Plot probability density functions (histograms) generated by w_pdist or other\nprograms conforming to the same output format. This program operates in one of\nthree modes:\n\n instant\n Plot 1-D and 2-D histograms for an individual iteration. See\n ``plothist instant --help`` for more information.\n\n average\n Plot 1-D and 2-D histograms, averaged over several iterations. See\n ``plothist average --help`` for more information.\n\n evolution\n Plot the time evolution 1-D histograms as waterfall (heat map) plots.\n See ``plothist evolution --help`` for more information.\n\nThis program takes the output of ``w_pdist`` as input (see ``w_pdist --help``\nfor more information), and can generate any kind of graphical output that\nmatplotlib supports.\n\n\n--\nCommand-line options\n--\n'

	

	
westpa.cli.tools.plothist.entry_point()

	

ploterr

usage:

ploterr [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 {help,d.kinetics,d.probs,rw.probs,rw.kinetics,generic} ...

Plots error ranges for weighted ensemble datasets.

Command-line options

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

supported input formats:

{help,d.kinetics,d.probs,rw.probs,rw.kinetics,generic}
 help print help for this command or individual subcommands
 d.kinetics output of w_direct kinetics
 d.probs output of w_direct probs
 rw.probs output of w_reweight probs
 rw.kinetics output of w_reweight kinetics
 generic arbitrary HDF5 file and dataset

westpa.cli.tools.ploterr module

	
class westpa.cli.tools.ploterr.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.ploterr.WESTSubcommand(parent)

	Bases: WESTToolComponent

Base class for command-line tool subcommands. A little sugar for making this
more uniform.

	
subcommand = None

	

	
help_text = None

	

	
description = None

	

	
add_to_subparsers(subparsers)

	

	
go()

	

	
property work_manager

	The work manager for this tool. Raises AttributeError if this is not a parallel
tool.

	
class westpa.cli.tools.ploterr.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.ploterr.Plotter(h5file, h5key, iteration=-1, interface='matplotlib')

	Bases: object

This is a semi-generic plotting interface that has a built in curses based terminal plotter.
It’s fairly specific to what we’re using it for here, but we could (and maybe should) build it out into
a little library that we can use via the command line to plot things. Might be useful for looking at data later.
That would also cut the size of this tool down by a good bit.

	
plot(i=0, j=1, tau=1, iteration=None, dim=0, interface=None)

	

	
class westpa.cli.tools.ploterr.CommonPloterrs(parent)

	Bases: WESTSubcommand

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
parse_range(rangespec)

	

	
do_plot(data, output_filename, title=None, x_range=None, y_range=None, x_label=None, y_label=None)

	

	
class westpa.cli.tools.ploterr.GenericIntervalSubcommand(parent)

	Bases: CommonPloterrs

	
description = 'Plots generic expectation/CI data. A path to the HDF5 file and the dataset\nwithin it must be provided. This path takes the form **FILENAME/PATH[SLICE]**.\nIf the dataset is not a vector (one dimensional) then a slice must be provided.\nFor example, to access the state 0 to state 1 rate evolution calculated by\n``w_kinavg``, one would use ``kinavg.h5/rate_evolution[:,0,1]``.\n\n\n---\nCommand-line arguments\n---\n'

	

	
subcommand = 'generic'

	

	
help_text = 'arbitrary HDF5 file and dataset'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
load_and_validate_data()

	

	
go()

	

	
class westpa.cli.tools.ploterr.DirectKinetics(parent)

	Bases: CommonPloterrs

	
subcommand = 'd.kinetics'

	

	
help_text = 'output of w_direct kinetics'

	

	
input_filename = 'direct.h5'

	

	
flux_output_filename = 'flux_evolution_d_{state_label}.pdf'

	

	
rate_output_filename = 'rate_evolution_d_{istate_label}_{fstate_label}.pdf'

	

	
description = 'Plot evolution of state-to-state rates and total flux into states as generated\nby ``w_{direct/reweight} kinetics`` (when used with the ``--evolution-mode``\noption). Plots are generated for all rates/fluxes calculated. Output filenames\nrequire (and plot titles and axis labels support) substitution based on which\nflux/rate is being plotted:\n\n istate_label, fstate_label\n *(String, for rates)* Names of the initial and final states, as originally\n given to ``w_assign``.\n\n istate_index, fstate_index\n *(Integer, for rates)* Indices of initial and final states.\n\n state_label\n *(String, for fluxes)* Name of state\n\n state_index\n *(Integer, for fluxes)* Index of state\n'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
plot_flux(istate)

	

	
plot_rate(istate, jstate)

	

	
go()

	

	
class westpa.cli.tools.ploterr.DirectStateprobs(parent)

	Bases: CommonPloterrs

	
subcommand = 'd.probs'

	

	
help_text = 'output of w_direct probs'

	

	
input_filename = 'direct.h5'

	

	
pop_output_filename = 'pop_evolution_d_{state_label}.pdf'

	

	
color_output_filename = 'color_evolution_d_{state_label}.pdf'

	

	
description = 'Plot evolution of macrostate populations and associated uncertainties. Plots\nare generated for all states calculated. Output filenames require (and plot\ntitles and axis labels support) substitution based on which state is being\nplotted:\n\n state_label\n *(String, for fluxes)* Name of state\n\n state_index\n *(Integer, for fluxes)* Index of state\n'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
plot_pop(istate)

	

	
plot_color(istate)

	

	
go()

	

	
class westpa.cli.tools.ploterr.ReweightStateprobs(parent)

	Bases: DirectStateprobs

	
subcommand = 'rw.probs'

	

	
help_text = 'output of w_reweight probs'

	

	
input_filename = 'reweight.h5'

	

	
pop_output_filename = 'pop_evolution_rw_{state_label}.pdf'

	

	
color_output_filename = 'color_evolution_rw_{state_label}.pdf'

	

	
class westpa.cli.tools.ploterr.ReweightKinetics(parent)

	Bases: DirectKinetics

	
subcommand = 'rw.kinetics'

	

	
help_text = 'output of w_reweight kinetics'

	

	
input_filename = 'reweight.h5'

	

	
flux_output_filename = 'flux_evolution_rw_{state_label}.pdf'

	

	
rate_output_filename = 'rate_evolution_rw_{istate_label}_{fstate_label}.pdf'

	

	
class westpa.cli.tools.ploterr.PloterrsTool

	Bases: WESTMasterCommand

	
prog = 'ploterrs'

	

	
subcommands = [<class 'westpa.cli.tools.ploterr.DirectKinetics'>, <class 'westpa.cli.tools.ploterr.DirectStateprobs'>, <class 'westpa.cli.tools.ploterr.ReweightStateprobs'>, <class 'westpa.cli.tools.ploterr.ReweightKinetics'>, <class 'westpa.cli.tools.ploterr.GenericIntervalSubcommand'>]

	

	
subparsers_title = 'supported input formats'

	

	
description = 'Plots error ranges for weighted ensemble datasets.\n\n\n---\nCommand-line options\n---\n'

	

	
westpa.cli.tools.ploterr.entry_point()

	

westpa.cli package

Deprecated tools:

	 w_kinavg

	 w_kinetics

	 w_stateprobs

	 w_dumpsegs

	 w_postanalysis_matrix

	 w_postanalysis_reweight

	 w_reweight

	 w_fluxanl

w_kinavg

WARNING: w_kinavg is being deprecated. Please use w_direct instead.

usage:

w_kinavg trace [-h] [-W WEST_H5FILE] [--first-iter N_ITER] [--last-iter N_ITER] [--step-iter STEP]
 [-a ASSIGNMENTS] [-o OUTPUT] [-k KINETICS] [--disable-bootstrap] [--disable-correl]
 [--alpha ALPHA] [--autocorrel-alpha ACALPHA] [--nsets NSETS]
 [-e {cumulative,blocked,none}] [--window-frac WINDOW_FRAC] [--disable-averages]

Calculate average rates/fluxes and associated errors from weighted ensemble
data. Bin assignments (usually “assign.h5”) and kinetics data (usually
“direct.h5”) data files must have been previously generated (see
“w_assign –help” and “w_direct init –help” for information on
generating these files).

The evolution of all datasets may be calculated, with or without confidence
intervals.

Output format

The output file (-o/–output, usually “direct.h5”) contains the following
dataset:

/avg_rates [state,state]
 (Structured -- see below) State-to-state rates based on entire window of
 iterations selected.

/avg_total_fluxes [state]
 (Structured -- see below) Total fluxes into each state based on entire
 window of iterations selected.

/avg_conditional_fluxes [state,state]
 (Structured -- see below) State-to-state fluxes based on entire window of
 iterations selected.

If –evolution-mode is specified, then the following additional datasets are
available:

/rate_evolution [window][state][state]
 (Structured -- see below). State-to-state rates based on windows of
 iterations of varying width. If --evolution-mode=cumulative, then
 these windows all begin at the iteration specified with
 --start-iter and grow in length by --step-iter for each successive
 element. If --evolution-mode=blocked, then these windows are all of
 width --step-iter (excluding the last, which may be shorter), the first
 of which begins at iteration --start-iter.

/target_flux_evolution [window,state]
 (Structured -- see below). Total flux into a given macro state based on
 windows of iterations of varying width, as in /rate_evolution.

/conditional_flux_evolution [window,state,state]
 (Structured -- see below). State-to-state fluxes based on windows of
 varying width, as in /rate_evolution.

The structure of these datasets is as follows:

iter_start
 (Integer) Iteration at which the averaging window begins (inclusive).

iter_stop
 (Integer) Iteration at which the averaging window ends (exclusive).

expected
 (Floating-point) Expected (mean) value of the observable as evaluated within
 this window, in units of inverse tau.

ci_lbound
 (Floating-point) Lower bound of the confidence interval of the observable
 within this window, in units of inverse tau.

ci_ubound
 (Floating-point) Upper bound of the confidence interval of the observable
 within this window, in units of inverse tau.

stderr
 (Floating-point) The standard error of the mean of the observable
 within this window, in units of inverse tau.

corr_len
 (Integer) Correlation length of the observable within this window, in units
 of tau.

Each of these datasets is also stamped with a number of attributes:

mcbs_alpha
 (Floating-point) Alpha value of confidence intervals. (For example,
 alpha=0.05 corresponds to a 95% confidence interval.)

mcbs_nsets
 (Integer) Number of bootstrap data sets used in generating confidence
 intervals.

mcbs_acalpha
 (Floating-point) Alpha value for determining correlation lengths.

Command-line options

optional arguments:

-h, --help show this help message and exit

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).
--step-iter STEP Analyze/report in blocks of STEP iterations.

input/output options:

-a ASSIGNMENTS, --assignments ASSIGNMENTS
 Bin assignments and macrostate definitions are in ASSIGNMENTS (default:
 assign.h5).
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: kinavg.h5).

input/output options:

-k KINETICS, --kinetics KINETICS
 Populations and transition rates are stored in KINETICS (default: kintrace.h5).

confidence interval calculation options:

--disable-bootstrap, -db
 Enable the use of Monte Carlo Block Bootstrapping.
--disable-correl, -dc
 Disable the correlation analysis.
--alpha ALPHA Calculate a (1-ALPHA) confidence interval' (default: 0.05)
--autocorrel-alpha ACALPHA
 Evaluate autocorrelation to (1-ACALPHA) significance. Note that too small an
 ACALPHA will result in failure to detect autocorrelation in a noisy flux signal.
 (Default: same as ALPHA.)
--nsets NSETS Use NSETS samples for bootstrapping (default: chosen based on ALPHA)

calculation options:

-e {cumulative,blocked,none}, --evolution-mode {cumulative,blocked,none}
 How to calculate time evolution of rate estimates. ``cumulative`` evaluates rates
 over windows starting with --start-iter and getting progressively wider to --stop-
 iter by steps of --step-iter. ``blocked`` evaluates rates over windows of width
 --step-iter, the first of which begins at --start-iter. ``none`` (the default)
 disables calculation of the time evolution of rate estimates.
--window-frac WINDOW_FRAC
 Fraction of iterations to use in each window when running in ``cumulative`` mode.
 The (1 - frac) fraction of iterations will be discarded from the start of each
 window.

misc options:

--disable-averages, -da
 Whether or not the averages should be printed to the console (set to FALSE if flag
 is used).

westpa.cli.tools.w_kinavg module

	
class westpa.cli.tools.w_kinavg.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.w_kinavg.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_kinavg.DKinAvg(parent)

	Bases: AverageCommands

	
subcommand = 'kinetics'

	

	
help_text = 'Generates rate and flux values from a WESTPA simulation via tracing.'

	

	
default_kinetics_file = 'direct.h5'

	

	
description = 'Calculate average rates/fluxes and associated errors from weighted ensemble\ndata. Bin assignments (usually "assign.h5") and kinetics data (usually\n"direct.h5") data files must have been previously generated (see\n"w_assign --help" and "w_direct init --help" for information on\ngenerating these files).\n\nThe evolution of all datasets may be calculated, with or without confidence\nintervals.\n\n---\nOutput format\n---\n\nThe output file (-o/--output, usually "direct.h5") contains the following\ndataset:\n\n /avg_rates [state,state]\n (Structured -- see below) State-to-state rates based on entire window of\n iterations selected.\n\n /avg_total_fluxes [state]\n (Structured -- see below) Total fluxes into each state based on entire\n window of iterations selected.\n\n /avg_conditional_fluxes [state,state]\n (Structured -- see below) State-to-state fluxes based on entire window of\n iterations selected.\n\nIf --evolution-mode is specified, then the following additional datasets are\navailable:\n\n /rate_evolution [window][state][state]\n (Structured -- see below). State-to-state rates based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\n /target_flux_evolution [window,state]\n (Structured -- see below). Total flux into a given macro state based on\n windows of iterations of varying width, as in /rate_evolution.\n\n /conditional_flux_evolution [window,state,state]\n (Structured -- see below). State-to-state fluxes based on windows of\n varying width, as in /rate_evolution.\n\nThe structure of these datasets is as follows:\n\n iter_start\n (Integer) Iteration at which the averaging window begins (inclusive).\n\n iter_stop\n (Integer) Iteration at which the averaging window ends (exclusive).\n\n expected\n (Floating-point) Expected (mean) value of the observable as evaluated within\n this window, in units of inverse tau.\n\n ci_lbound\n (Floating-point) Lower bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n ci_ubound\n (Floating-point) Upper bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n stderr\n (Floating-point) The standard error of the mean of the observable\n within this window, in units of inverse tau.\n\n corr_len\n (Integer) Correlation length of the observable within this window, in units\n of tau.\n\nEach of these datasets is also stamped with a number of attributes:\n\n mcbs_alpha\n (Floating-point) Alpha value of confidence intervals. (For example,\n *alpha=0.05* corresponds to a 95% confidence interval.)\n\n mcbs_nsets\n (Integer) Number of bootstrap data sets used in generating confidence\n intervals.\n\n mcbs_acalpha\n (Floating-point) Alpha value for determining correlation lengths.\n\n\n---\nCommand-line options\n---\n'

	

	
w_kinavg()

	

	
go()

	

	
westpa.cli.tools.w_kinavg.warn()

	Issue a warning, or maybe ignore it or raise an exception.

	message
	Text of the warning message.

	category
	The Warning category subclass. Defaults to UserWarning.

	stacklevel
	How far up the call stack to make this warning appear. A value of 2 for
example attributes the warning to the caller of the code calling warn().

	source
	If supplied, the destroyed object which emitted a ResourceWarning

	skip_file_prefixes
	An optional tuple of module filename prefixes indicating frames to skip
during stacklevel computations for stack frame attribution.

	
class westpa.cli.tools.w_kinavg.WKinAvg(parent)

	Bases: DKinAvg

	
subcommand = 'trace'

	

	
help_text = 'averages and CIs for path-tracing kinetics analysis'

	

	
default_kinetics_file = 'kintrace.h5'

	

	
default_output_file = 'kinavg.h5'

	

	
class westpa.cli.tools.w_kinavg.WDirect

	Bases: WESTMasterCommand, WESTParallelTool

	
prog = 'w_kinavg'

	

	
subcommands = [<class 'westpa.cli.tools.w_kinavg.WKinAvg'>]

	

	
subparsers_title = 'direct kinetics analysis schemes'

	

	
description = 'Calculate average rates and associated errors from weighted ensemble data. Bin\nassignments (usually "assignments.h5") and kinetics data (usually\n"kintrace.h5" or "kinmat.h5") data files must have been previously generated\n(see "w_assign --help" and "w_kinetics --help" for information on generating\nthese files).\n\n---\nOutput format\n---\n\nThe output file (-o/--output, usually "kinavg.h5") contains the following\ndataset:\n\n /avg_rates [state,state]\n (Structured -- see below) State-to-state rates based on entire window of\n iterations selected.\n\nFor trace mode, the following additional datasets are generated:\n\n /avg_total_fluxes [state]\n (Structured -- see below) Total fluxes into each state based on entire\n window of iterations selected.\n\n /avg_conditional_fluxes [state,state]\n (Structured -- see below) State-to-state fluxes based on entire window of\n iterations selected.\n\nIf --evolution-mode is specified, then the following additional dataset is\navailable:\n\n /rate_evolution [window][state][state]\n (Structured -- see below). State-to-state rates based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\nIf --evolution-mode is specified in trace mode, the following additional\ndatasets are available:\n\n /target_flux_evolution [window,state]\n (Structured -- see below). Total flux into a given macro state based on\n windows of iterations of varying width, as in /rate_evolution.\n\n /conditional_flux_evolution [window,state,state]\n (Structured -- see below). State-to-state fluxes based on windows of\n varying width, as in /rate_evolution.\n\nThe structure of these datasets is as follows:\n\n iter_start\n (Integer) Iteration at which the averaging window begins (inclusive).\n\n iter_stop\n (Integer) Iteration at which the averaging window ends (exclusive).\n\n expected\n (Floating-point) Expected (mean) value of the rate as evaluated within\n this window, in units of inverse tau.\n\n ci_lbound\n (Floating-point) Lower bound of the confidence interval on the rate\n within this window, in units of inverse tau.\n\n ci_ubound\n (Floating-point) Upper bound of the confidence interval on the rate\n within this window, in units of inverse tau.\n\n corr_len\n (Integer) Correlation length of the rate within this window, in units\n of tau.\n\nEach of these datasets is also stamped with a number of attributes:\n\n mcbs_alpha\n (Floating-point) Alpha value of confidence intervals. (For example,\n *alpha=0.05* corresponds to a 95% confidence interval.)\n\n mcbs_nsets\n (Integer) Number of bootstrap data sets used in generating confidence\n intervals.\n\n mcbs_acalpha\n (Floating-point) Alpha value for determining correlation lengths.\n\n\n---\nCommand-line options\n---\n'

	

	
westpa.cli.tools.w_kinavg.entry_point()

	

w_kinetics

WARNING: w_kinetics is being deprecated. Please use w_direct instead.

usage:

w_kinetics trace [-h] [-W WEST_H5FILE] [--first-iter N_ITER] [--last-iter N_ITER]
 [--step-iter STEP] [-a ASSIGNMENTS] [-o OUTPUT]

Calculate state-to-state rates and transition event durations by tracing
trajectories.

A bin assignment file (usually “assign.h5”) including trajectory labeling
is required (see “w_assign –help” for information on generating this file).

This subcommand for w_direct is used as input for all other w_direct
subcommands, which will convert the flux data in the output file into
average rates/fluxes/populations with confidence intervals.

Output format

The output file (-o/–output, by default “direct.h5”) contains the
following datasets:

``/conditional_fluxes`` [iteration][state][state]
 (Floating-point) Macrostate-to-macrostate fluxes. These are **not**
 normalized by the population of the initial macrostate.

``/conditional_arrivals`` [iteration][stateA][stateB]
 (Integer) Number of trajectories arriving at state *stateB* in a given
 iteration, given that they departed from *stateA*.

``/total_fluxes`` [iteration][state]
 (Floating-point) Total flux into a given macrostate.

``/arrivals`` [iteration][state]
 (Integer) Number of trajectories arriving at a given state in a given
 iteration, regardless of where they originated.

``/duration_count`` [iteration]
 (Integer) The number of event durations recorded in each iteration.

``/durations`` [iteration][event duration]
 (Structured -- see below) Event durations for transition events ending
 during a given iteration. These are stored as follows:

 istate
 (Integer) Initial state of transition event.
 fstate
 (Integer) Final state of transition event.
 duration
 (Floating-point) Duration of transition, in units of tau.
 weight
 (Floating-point) Weight of trajectory at end of transition, **not**
 normalized by initial state population.

Because state-to-state fluxes stored in this file are not normalized by
initial macrostate population, they cannot be used as rates without further
processing. The w_direct kinetics command is used to perform this normalization
while taking statistical fluctuation and correlation into account. See
w_direct kinetics --help for more information. Target fluxes (total flux
into a given state) require no such normalization.

Command-line options

optional arguments:

-h, --help show this help message and exit

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).
--step-iter STEP Analyze/report in blocks of STEP iterations.

input/output options:

-a ASSIGNMENTS, --assignments ASSIGNMENTS
 Bin assignments and macrostate definitions are in ASSIGNMENTS (default:
 assign.h5).
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: kintrace.h5).

westpa.cli.tools.w_kinetics module

	
class westpa.cli.tools.w_kinetics.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.w_kinetics.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
westpa.cli.tools.w_kinetics.warn()

	Issue a warning, or maybe ignore it or raise an exception.

	message
	Text of the warning message.

	category
	The Warning category subclass. Defaults to UserWarning.

	stacklevel
	How far up the call stack to make this warning appear. A value of 2 for
example attributes the warning to the caller of the code calling warn().

	source
	If supplied, the destroyed object which emitted a ResourceWarning

	skip_file_prefixes
	An optional tuple of module filename prefixes indicating frames to skip
during stacklevel computations for stack frame attribution.

	
class westpa.cli.tools.w_kinetics.DKinetics(parent)

	Bases: WESTKineticsBase, WKinetics

	
subcommand = 'init'

	

	
default_kinetics_file = 'direct.h5'

	

	
default_output_file = 'direct.h5'

	

	
help_text = 'calculate state-to-state kinetics by tracing trajectories'

	

	
description = 'Calculate state-to-state rates and transition event durations by tracing\ntrajectories.\n\nA bin assignment file (usually "assign.h5") including trajectory labeling\nis required (see "w_assign --help" for information on generating this file).\n\nThis subcommand for w_direct is used as input for all other w_direct\nsubcommands, which will convert the flux data in the output file into\naverage rates/fluxes/populations with confidence intervals.\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "direct.h5") contains the\nfollowing datasets:\n\n ``/conditional_fluxes`` [iteration][state][state]\n *(Floating-point)* Macrostate-to-macrostate fluxes. These are **not**\n normalized by the population of the initial macrostate.\n\n ``/conditional_arrivals`` [iteration][stateA][stateB]\n *(Integer)* Number of trajectories arriving at state *stateB* in a given\n iteration, given that they departed from *stateA*.\n\n ``/total_fluxes`` [iteration][state]\n *(Floating-point)* Total flux into a given macrostate.\n\n ``/arrivals`` [iteration][state]\n *(Integer)* Number of trajectories arriving at a given state in a given\n iteration, regardless of where they originated.\n\n ``/duration_count`` [iteration]\n *(Integer)* The number of event durations recorded in each iteration.\n\n ``/durations`` [iteration][event duration]\n *(Structured -- see below)* Event durations for transition events ending\n during a given iteration. These are stored as follows:\n\n istate\n *(Integer)* Initial state of transition event.\n fstate\n *(Integer)* Final state of transition event.\n duration\n *(Floating-point)* Duration of transition, in units of tau.\n weight\n *(Floating-point)* Weight of trajectory at end of transition, **not**\n normalized by initial state population.\n\nBecause state-to-state fluxes stored in this file are not normalized by\ninitial macrostate population, they cannot be used as rates without further\nprocessing. The ``w_direct kinetics`` command is used to perform this normalization\nwhile taking statistical fluctuation and correlation into account. See\n``w_direct kinetics --help`` for more information. Target fluxes (total flux\ninto a given state) require no such normalization.\n\n---\nCommand-line options\n---\n'

	

	
open_files()

	

	
go()

	

	
class westpa.cli.tools.w_kinetics.WKinetics(parent)

	Bases: DKinetics

	
subcommand = 'trace'

	

	
help_text = 'averages and CIs for path-tracing kinetics analysis'

	

	
default_output_file = 'kintrace.h5'

	

	
class westpa.cli.tools.w_kinetics.WDirect

	Bases: WESTMasterCommand, WESTParallelTool

	
prog = 'w_kinetics'

	

	
subcommands = [<class 'westpa.cli.tools.w_kinetics.WKinetics'>]

	

	
subparsers_title = 'calculate state-to-state kinetics by tracing trajectories'

	

	
description = 'Calculate state-to-state rates and transition event durations by tracing\ntrajectories.\n\nA bin assignment file (usually "assign.h5") including trajectory labeling\nis required (see "w_assign --help" for information on generating this file).\n\nThe output generated by this program is used as input for the ``w_kinavg``\ntool, which converts the flux data in the output file into average rates\nwith confidence intervals. See ``w_kinavg trace --help`` for more\ninformation.\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "kintrace.h5") contains the\nfollowing datasets:\n\n ``/conditional_fluxes`` [iteration][state][state]\n *(Floating-point)* Macrostate-to-macrostate fluxes. These are **not**\n normalized by the population of the initial macrostate.\n\n ``/conditional_arrivals`` [iteration][stateA][stateB]\n *(Integer)* Number of trajectories arriving at state *stateB* in a given\n iteration, given that they departed from *stateA*.\n\n ``/total_fluxes`` [iteration][state]\n *(Floating-point)* Total flux into a given macrostate.\n\n ``/arrivals`` [iteration][state]\n *(Integer)* Number of trajectories arriving at a given state in a given\n iteration, regardless of where they originated.\n\n ``/duration_count`` [iteration]\n *(Integer)* The number of event durations recorded in each iteration.\n\n ``/durations`` [iteration][event duration]\n *(Structured -- see below)* Event durations for transition events ending\n during a given iteration. These are stored as follows:\n\n istate\n *(Integer)* Initial state of transition event.\n fstate\n *(Integer)* Final state of transition event.\n duration\n *(Floating-point)* Duration of transition, in units of tau.\n weight\n *(Floating-point)* Weight of trajectory at end of transition, **not**\n normalized by initial state population.\n\nBecause state-to-state fluxes stored in this file are not normalized by\ninitial macrostate population, they cannot be used as rates without further\nprocessing. The ``w_kinavg`` command is used to perform this normalization\nwhile taking statistical fluctuation and correlation into account. See\n``w_kinavg trace --help`` for more information. Target fluxes (total flux\ninto a given state) require no such normalization.\n\n---\nCommand-line options\n---\n'

	

	
westpa.cli.tools.w_kinetics.entry_point()

	

w_stateprobs

WARNING: w_stateprobs is being deprecated. Please use w_direct instead.

usage:

w_stateprobs trace [-h] [-W WEST_H5FILE] [--first-iter N_ITER] [--last-iter N_ITER]
 [--step-iter STEP] [-a ASSIGNMENTS] [-o OUTPUT] [-k KINETICS]
 [--disable-bootstrap] [--disable-correl] [--alpha ALPHA]
 [--autocorrel-alpha ACALPHA] [--nsets NSETS] [-e {cumulative,blocked,none}]
 [--window-frac WINDOW_FRAC] [--disable-averages]

Calculate average populations and associated errors in state populations from
weighted ensemble data. Bin assignments, including macrostate definitions,
are required. (See “w_assign –help” for more information).

Output format

The output file (-o/–output, usually “direct.h5”) contains the following
dataset:

/avg_state_probs [state]
 (Structured -- see below) Population of each state across entire
 range specified.

/avg_color_probs [state]
 (Structured -- see below) Population of each ensemble across entire
 range specified.

If –evolution-mode is specified, then the following additional datasets are
available:

/state_pop_evolution [window][state]
 (Structured -- see below). State populations based on windows of
 iterations of varying width. If --evolution-mode=cumulative, then
 these windows all begin at the iteration specified with
 --start-iter and grow in length by --step-iter for each successive
 element. If --evolution-mode=blocked, then these windows are all of
 width --step-iter (excluding the last, which may be shorter), the first
 of which begins at iteration --start-iter.

/color_prob_evolution [window][state]
 (Structured -- see below). Ensemble populations based on windows of
 iterations of varying width. If --evolution-mode=cumulative, then
 these windows all begin at the iteration specified with
 --start-iter and grow in length by --step-iter for each successive
 element. If --evolution-mode=blocked, then these windows are all of
 width --step-iter (excluding the last, which may be shorter), the first
 of which begins at iteration --start-iter.

The structure of these datasets is as follows:

iter_start
 (Integer) Iteration at which the averaging window begins (inclusive).

iter_stop
 (Integer) Iteration at which the averaging window ends (exclusive).

expected
 (Floating-point) Expected (mean) value of the observable as evaluated within
 this window, in units of inverse tau.

ci_lbound
 (Floating-point) Lower bound of the confidence interval of the observable
 within this window, in units of inverse tau.

ci_ubound
 (Floating-point) Upper bound of the confidence interval of the observable
 within this window, in units of inverse tau.

stderr
 (Floating-point) The standard error of the mean of the observable
 within this window, in units of inverse tau.

corr_len
 (Integer) Correlation length of the observable within this window, in units
 of tau.

Each of these datasets is also stamped with a number of attributes:

mcbs_alpha
 (Floating-point) Alpha value of confidence intervals. (For example,
 alpha=0.05 corresponds to a 95% confidence interval.)

mcbs_nsets
 (Integer) Number of bootstrap data sets used in generating confidence
 intervals.

mcbs_acalpha
 (Floating-point) Alpha value for determining correlation lengths.

Command-line options

optional arguments:

-h, --help show this help message and exit

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).
--step-iter STEP Analyze/report in blocks of STEP iterations.

input/output options:

-a ASSIGNMENTS, --assignments ASSIGNMENTS
 Bin assignments and macrostate definitions are in ASSIGNMENTS (default:
 assign.h5).
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: stateprobs.h5).

input/output options:

-k KINETICS, --kinetics KINETICS
 Populations and transition rates are stored in KINETICS (default: assign.h5).

confidence interval calculation options:

--disable-bootstrap, -db
 Enable the use of Monte Carlo Block Bootstrapping.
--disable-correl, -dc
 Disable the correlation analysis.
--alpha ALPHA Calculate a (1-ALPHA) confidence interval' (default: 0.05)
--autocorrel-alpha ACALPHA
 Evaluate autocorrelation to (1-ACALPHA) significance. Note that too small an
 ACALPHA will result in failure to detect autocorrelation in a noisy flux signal.
 (Default: same as ALPHA.)
--nsets NSETS Use NSETS samples for bootstrapping (default: chosen based on ALPHA)

calculation options:

-e {cumulative,blocked,none}, --evolution-mode {cumulative,blocked,none}
 How to calculate time evolution of rate estimates. ``cumulative`` evaluates rates
 over windows starting with --start-iter and getting progressively wider to --stop-
 iter by steps of --step-iter. ``blocked`` evaluates rates over windows of width
 --step-iter, the first of which begins at --start-iter. ``none`` (the default)
 disables calculation of the time evolution of rate estimates.
--window-frac WINDOW_FRAC
 Fraction of iterations to use in each window when running in ``cumulative`` mode.
 The (1 - frac) fraction of iterations will be discarded from the start of each
 window.

misc options:

--disable-averages, -da
 Whether or not the averages should be printed to the console (set to FALSE if flag
 is used).

westpa.cli.tools.w_stateprobs module

	
class westpa.cli.tools.w_stateprobs.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.w_stateprobs.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
westpa.cli.tools.w_stateprobs.warn()

	Issue a warning, or maybe ignore it or raise an exception.

	message
	Text of the warning message.

	category
	The Warning category subclass. Defaults to UserWarning.

	stacklevel
	How far up the call stack to make this warning appear. A value of 2 for
example attributes the warning to the caller of the code calling warn().

	source
	If supplied, the destroyed object which emitted a ResourceWarning

	skip_file_prefixes
	An optional tuple of module filename prefixes indicating frames to skip
during stacklevel computations for stack frame attribution.

	
class westpa.cli.tools.w_stateprobs.DStateProbs(parent)

	Bases: AverageCommands

	
subcommand = 'probs'

	

	
help_text = 'Calculates color and state probabilities via tracing.'

	

	
default_kinetics_file = 'direct.h5'

	

	
description = 'Calculate average populations and associated errors in state populations from\nweighted ensemble data. Bin assignments, including macrostate definitions,\nare required. (See "w_assign --help" for more information).\n\n---\nOutput format\n---\n\nThe output file (-o/--output, usually "direct.h5") contains the following\ndataset:\n\n /avg_state_probs [state]\n (Structured -- see below) Population of each state across entire\n range specified.\n\n /avg_color_probs [state]\n (Structured -- see below) Population of each ensemble across entire\n range specified.\n\nIf --evolution-mode is specified, then the following additional datasets are\navailable:\n\n /state_pop_evolution [window][state]\n (Structured -- see below). State populations based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\n /color_prob_evolution [window][state]\n (Structured -- see below). Ensemble populations based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\nThe structure of these datasets is as follows:\n\n iter_start\n (Integer) Iteration at which the averaging window begins (inclusive).\n\n iter_stop\n (Integer) Iteration at which the averaging window ends (exclusive).\n\n expected\n (Floating-point) Expected (mean) value of the observable as evaluated within\n this window, in units of inverse tau.\n\n ci_lbound\n (Floating-point) Lower bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n ci_ubound\n (Floating-point) Upper bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n stderr\n (Floating-point) The standard error of the mean of the observable\n within this window, in units of inverse tau.\n\n corr_len\n (Integer) Correlation length of the observable within this window, in units\n of tau.\n\nEach of these datasets is also stamped with a number of attributes:\n\n mcbs_alpha\n (Floating-point) Alpha value of confidence intervals. (For example,\n *alpha=0.05* corresponds to a 95% confidence interval.)\n\n mcbs_nsets\n (Integer) Number of bootstrap data sets used in generating confidence\n intervals.\n\n mcbs_acalpha\n (Floating-point) Alpha value for determining correlation lengths.\n\n\n---\nCommand-line options\n---\n'

	

	
calculate_state_populations(pops)

	

	
w_stateprobs()

	

	
go()

	

	
class westpa.cli.tools.w_stateprobs.WStateProbs(parent)

	Bases: DStateProbs

	
subcommand = 'trace'

	

	
help_text = 'averages and CIs for path-tracing kinetics analysis'

	

	
default_output_file = 'stateprobs.h5'

	

	
default_kinetics_file = 'assign.h5'

	

	
class westpa.cli.tools.w_stateprobs.WDirect

	Bases: WESTMasterCommand, WESTParallelTool

	
prog = 'w_stateprobs'

	

	
subcommands = [<class 'westpa.cli.tools.w_stateprobs.WStateProbs'>]

	

	
subparsers_title = 'calculate state-to-state kinetics by tracing trajectories'

	

	
description = 'Calculate average populations and associated errors in state populations from\nweighted ensemble data. Bin assignments, including macrostate definitions,\nare required. (See "w_assign --help" for more information).\n\n---\nOutput format\n---\n\nThe output file (-o/--output, usually "stateprobs.h5") contains the following\ndataset:\n\n /avg_state_pops [state]\n (Structured -- see below) Population of each state across entire\n range specified.\n\nIf --evolution-mode is specified, then the following additional dataset is\navailable:\n\n /state_pop_evolution [window][state]\n (Structured -- see below). State populations based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\nThe structure of these datasets is as follows:\n\n iter_start\n (Integer) Iteration at which the averaging window begins (inclusive).\n\n iter_stop\n (Integer) Iteration at which the averaging window ends (exclusive).\n\n expected\n (Floating-point) Expected (mean) value of the rate as evaluated within\n this window, in units of inverse tau.\n\n ci_lbound\n (Floating-point) Lower bound of the confidence interval on the rate\n within this window, in units of inverse tau.\n\n ci_ubound\n (Floating-point) Upper bound of the confidence interval on the rate\n within this window, in units of inverse tau.\n\n corr_len\n (Integer) Correlation length of the rate within this window, in units\n of tau.\n\nEach of these datasets is also stamped with a number of attributes:\n\n mcbs_alpha\n (Floating-point) Alpha value of confidence intervals. (For example,\n *alpha=0.05* corresponds to a 95% confidence interval.)\n\n mcbs_nsets\n (Integer) Number of bootstrap data sets used in generating confidence\n intervals.\n\n mcbs_acalpha\n (Floating-point) Alpha value for determining correlation lengths.\n\n\n---\nCommand-line options\n---\n'

	

	
westpa.cli.tools.w_stateprobs.entry_point()

	

w_dumpsegs

westpa.cli.tools.w_dumpsegs module

	
westpa.cli.tools.w_dumpsegs.warn()

	Issue a warning, or maybe ignore it or raise an exception.

	message
	Text of the warning message.

	category
	The Warning category subclass. Defaults to UserWarning.

	stacklevel
	How far up the call stack to make this warning appear. A value of 2 for
example attributes the warning to the caller of the code calling warn().

	source
	If supplied, the destroyed object which emitted a ResourceWarning

	skip_file_prefixes
	An optional tuple of module filename prefixes indicating frames to skip
during stacklevel computations for stack frame attribution.

	
class westpa.cli.tools.w_dumpsegs.WESTTool

	Bases: WESTToolComponent

Base class for WEST command line tools

	
prog = None

	

	
usage = None

	

	
description = None

	

	
epilog = None

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
make_parser(prog=None, usage=None, description=None, epilog=None, args=None)

	

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then call self.go()

	
class westpa.cli.tools.w_dumpsegs.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_dumpsegs.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.cli.tools.w_dumpsegs.WDumpSegs

	Bases: WESTTool

	
prog = 'w_dumpsegs'

	

	
description = 'Dump segment data as text. This is very inefficient, so this tool should be used\nas a last resort (use hdfview/h5ls to look at data, and access HDF5 directly for\nsignificant analysis tasks).\n'

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
westpa.cli.tools.w_dumpsegs.entry_point()

	

w_postanalysis_matrix

westpa.cli.tools.w_postanalysis_matrix module

	
class westpa.cli.tools.w_postanalysis_matrix.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.w_postanalysis_matrix.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
westpa.cli.tools.w_postanalysis_matrix.warn()

	Issue a warning, or maybe ignore it or raise an exception.

	message
	Text of the warning message.

	category
	The Warning category subclass. Defaults to UserWarning.

	stacklevel
	How far up the call stack to make this warning appear. A value of 2 for
example attributes the warning to the caller of the code calling warn().

	source
	If supplied, the destroyed object which emitted a ResourceWarning

	skip_file_prefixes
	An optional tuple of module filename prefixes indicating frames to skip
during stacklevel computations for stack frame attribution.

	
class westpa.cli.tools.w_postanalysis_matrix.RWMatrix(parent)

	Bases: WESTKineticsBase, FluxMatrix

	
subcommand = 'init'

	

	
default_kinetics_file = 'reweight.h5'

	

	
default_output_file = 'reweight.h5'

	

	
help_text = 'create a color-labeled transition matrix from a WESTPA simulation'

	

	
description = 'Generate a colored transition matrix from a WE assignment file. The subsequent\nanalysis requires that the assignments are calculated using only the initial and\nfinal time points of each trajectory segment. This may require downsampling the\nh5file generated by a WE simulation. In the future w_assign may be enhanced to optionally\ngenerate the necessary assignment file from a h5file with intermediate time points.\nAdditionally, this analysis is currently only valid on simulations performed under\neither equilibrium or steady-state conditions without recycling target states.\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "reweight.h5") contains the\nfollowing datasets:\n\n ``/bin_populations`` [window, bin]\n The reweighted populations of each bin based on windows. Bins contain\n one color each, so to recover the original un-colored spatial bins,\n one must sum over all states.\n\n ``/iterations`` [iteration]\n *(Structured -- see below)* Sparse matrix data from each\n iteration. They are reconstructed and averaged within the\n w_reweight {kinetics/probs} routines so that observables may\n be calculated. Each group contains 4 vectors of data:\n\n flux\n *(Floating-point)* The weight of a series of flux events\n cols\n *(Integer)* The bin from which a flux event began.\n cols\n *(Integer)* The bin into which the walker fluxed.\n obs\n *(Integer)* How many flux events were observed during this\n iteration.\n\n---\nCommand-line options\n---\n'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
go()

	

	
class westpa.cli.tools.w_postanalysis_matrix.PAMatrix(parent)

	Bases: RWMatrix

	
subcommand = 'init'

	

	
help_text = 'averages and CIs for path-tracing kinetics analysis'

	

	
default_output_file = 'flux_matrices.h5'

	

	
class westpa.cli.tools.w_postanalysis_matrix.WReweight

	Bases: WESTMasterCommand, WESTParallelTool

	
prog = 'w_postanalysis_matrix'

	

	
subcommands = [<class 'westpa.cli.tools.w_postanalysis_matrix.PAMatrix'>]

	

	
subparsers_title = 'calculate state-to-state kinetics by tracing trajectories'

	

	
description = 'Generate a colored transition matrix from a WE assignment file. The subsequent\nanalysis requires that the assignments are calculated using only the initial and\nfinal time points of each trajectory segment. This may require downsampling the\nh5file generated by a WE simulation. In the future w_assign may be enhanced to optionally\ngenerate the necessary assignment file from a h5file with intermediate time points.\nAdditionally, this analysis is currently only valid on simulations performed under\neither equilibrium or steady-state conditions without recycling target states.\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "reweight.h5") contains the\nfollowing datasets:\n\n ``/bin_populations`` [window, bin]\n The reweighted populations of each bin based on windows. Bins contain\n one color each, so to recover the original un-colored spatial bins,\n one must sum over all states.\n\n ``/iterations`` [iteration]\n *(Structured -- see below)* Sparse matrix data from each\n iteration. They are reconstructed and averaged within the\n w_reweight {kinetics/probs} routines so that observables may\n be calculated. Each group contains 4 vectors of data:\n\n flux\n *(Floating-point)* The weight of a series of flux events\n cols\n *(Integer)* The bin from which a flux event began.\n cols\n *(Integer)* The bin into which the walker fluxed.\n obs\n *(Integer)* How many flux events were observed during this\n iteration.\n\n---\nCommand-line options\n---\n'

	

	
westpa.cli.tools.w_postanalysis_matrix.entry_point()

	

w_postanalysis_reweight

westpa.cli.tools.w_postanalysis_reweight module

	
class westpa.cli.tools.w_postanalysis_reweight.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.w_postanalysis_reweight.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
westpa.cli.tools.w_postanalysis_reweight.warn()

	Issue a warning, or maybe ignore it or raise an exception.

	message
	Text of the warning message.

	category
	The Warning category subclass. Defaults to UserWarning.

	stacklevel
	How far up the call stack to make this warning appear. A value of 2 for
example attributes the warning to the caller of the code calling warn().

	source
	If supplied, the destroyed object which emitted a ResourceWarning

	skip_file_prefixes
	An optional tuple of module filename prefixes indicating frames to skip
during stacklevel computations for stack frame attribution.

	
class westpa.cli.tools.w_postanalysis_reweight.RWAverage(parent)

	Bases: RWStateProbs, RWRate

	
subcommand = 'average'

	

	
help_text = 'Averages and returns fluxes, rates, and color/state populations.'

	

	
default_kinetics_file = 'reweight.h5'

	

	
default_output_file = 'reweight.h5'

	

	
description = 'A convenience function to run kinetics/probs. Bin assignments,\nincluding macrostate definitions, are required. (See\n"w_assign --help" for more information).\n\nFor more information on the individual subcommands this subs in for, run\nw_reweight {kinetics/probs} --help.\n\n---\nCommand-line options\n---\n'

	

	
go()

	

	
class westpa.cli.tools.w_postanalysis_reweight.PAAverage(parent)

	Bases: RWAverage

	
subcommand = 'average'

	

	
help_text = ''

	

	
default_output_file = 'kinrw.h5'

	

	
default_kinetics_file = 'flux_matrices.h5'

	

	
class westpa.cli.tools.w_postanalysis_reweight.WReweight

	Bases: WESTMasterCommand, WESTParallelTool

	
prog = 'w_postanalysis_reweight'

	

	
subcommands = [<class 'westpa.cli.tools.w_postanalysis_reweight.PAAverage'>]

	

	
subparsers_title = 'calculate state-to-state kinetics by tracing trajectories'

	

	
description = 'A convenience function to run kinetics/probs. Bin assignments,\nincluding macrostate definitions, are required. (See\n"w_assign --help" for more information).\n\nFor more information on the individual subcommands this subs in for, run\nw_reweight {kinetics/probs} --help.\n\n---\nCommand-line options\n---\n'

	

	
westpa.cli.tools.w_postanalysis_reweight.entry_point()

	

w_reweight

westpa.cli.tools.w_reweight module

	
class westpa.cli.tools.w_reweight.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.cli.tools.w_reweight.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.cli.tools.w_reweight.WESTKineticsBase(parent)

	Bases: WESTSubcommand

Common argument processing for w_direct/w_reweight subcommands.
Mostly limited to handling input and output from w_assign.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.cli.tools.w_reweight.AverageCommands(parent)

	Bases: WESTKineticsBase

	
default_output_file = 'direct.h5'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
stamp_mcbs_info(dataset)

	

	
open_files()

	

	
open_assignments()

	

	
print_averages(dataset, header, dim=1)

	

	
run_calculation(pi, nstates, start_iter, stop_iter, step_iter, dataset, eval_block, name, dim, do_averages=False, **extra)

	

	
westpa.cli.tools.w_reweight.generate_future(work_manager, name, eval_block, kwargs)

	

	
westpa.cli.tools.w_reweight.mcbs_ci_correl(estimator_datasets, estimator, alpha, n_sets=None, args=None, autocorrel_alpha=None, autocorrel_n_sets=None, subsample=None, do_correl=True, mcbs_enable=None, estimator_kwargs={})

	Perform a Monte Carlo bootstrap estimate for the (1-alpha) confidence interval
on the given dataset with the given estimator. This routine is appropriate
for time-correlated data, using the method described in Huber & Kim, “Weighted-ensemble
Brownian dynamics simulations for protein association reactions” (1996),
doi:10.1016/S0006-3495(96)79552-8 to determine a statistically-significant correlation time
and then reducing the dataset by a factor of that correlation time before running a “classic”
Monte Carlo bootstrap.

Returns (estimate, ci_lb, ci_ub, correl_time) where estimate is the application of the
given estimator to the input dataset, ci_lb and ci_ub are the
lower and upper limits, respectively, of the (1-alpha) confidence interval on
estimate, and correl_time is the correlation time of the dataset, significant to
(1-autocorrel_alpha).

	estimator is called as estimator(dataset, *args, **kwargs). Common estimators include:
	
	np.mean – calculate the confidence interval on the mean of dataset

	np.median – calculate a confidence interval on the median of dataset

	np.std – calculate a confidence interval on the standard deviation of datset.

n_sets is the number of synthetic data sets to generate using the given estimator,
which will be chosen using `get_bssize()`_ if n_sets is not given.

autocorrel_alpha (which defaults to alpha) can be used to adjust the significance
level of the autocorrelation calculation. Note that too high a significance level (too low an
alpha) for evaluating the significance of autocorrelation values can result in a failure to
detect correlation if the autocorrelation function is noisy.

The given subsample function is used, if provided, to subsample the dataset prior to running
the full Monte Carlo bootstrap. If none is provided, then a random entry from each correlated
block is used as the value for that block. Other reasonable choices include np.mean,
np.median, (lambda x: x[0]) or (lambda x: x[-1]). In particular, using
subsample=np.mean will converge to the block averaged mean and standard error,
while accounting for any non-normality in the distribution of the mean.

	
westpa.cli.tools.w_reweight.reweight_for_c(rows, cols, obs, flux, insert, indices, nstates, nbins, state_labels, state_map, nfbins, istate, jstate, stride, bin_last_state_map, bin_state_map, return_obs, obs_threshold=1)

	

	
class westpa.cli.tools.w_reweight.FluxMatrix

	Bases: object

	
w_postanalysis_matrix()

	

	
class westpa.cli.tools.w_reweight.RWMatrix(parent)

	Bases: WESTKineticsBase, FluxMatrix

	
subcommand = 'init'

	

	
default_kinetics_file = 'reweight.h5'

	

	
default_output_file = 'reweight.h5'

	

	
help_text = 'create a color-labeled transition matrix from a WESTPA simulation'

	

	
description = 'Generate a colored transition matrix from a WE assignment file. The subsequent\nanalysis requires that the assignments are calculated using only the initial and\nfinal time points of each trajectory segment. This may require downsampling the\nh5file generated by a WE simulation. In the future w_assign may be enhanced to optionally\ngenerate the necessary assignment file from a h5file with intermediate time points.\nAdditionally, this analysis is currently only valid on simulations performed under\neither equilibrium or steady-state conditions without recycling target states.\n\n---\nOutput format\n---\n\nThe output file (-o/--output, by default "reweight.h5") contains the\nfollowing datasets:\n\n ``/bin_populations`` [window, bin]\n The reweighted populations of each bin based on windows. Bins contain\n one color each, so to recover the original un-colored spatial bins,\n one must sum over all states.\n\n ``/iterations`` [iteration]\n *(Structured -- see below)* Sparse matrix data from each\n iteration. They are reconstructed and averaged within the\n w_reweight {kinetics/probs} routines so that observables may\n be calculated. Each group contains 4 vectors of data:\n\n flux\n *(Floating-point)* The weight of a series of flux events\n cols\n *(Integer)* The bin from which a flux event began.\n cols\n *(Integer)* The bin into which the walker fluxed.\n obs\n *(Integer)* How many flux events were observed during this\n iteration.\n\n---\nCommand-line options\n---\n'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
go()

	

	
class westpa.cli.tools.w_reweight.RWReweight(parent)

	Bases: AverageCommands

	
help_text = 'Parent class for all reweighting routines, as they all use the same estimator code.'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
accumulate_statistics(start_iter, stop_iter)

	This function pulls previously generated flux matrix data into memory.
The data is assumed to exist within an HDF5 file that is available
as a property.
The data is kept as a single dimensional numpy array to use with the
cython estimator.

	
generate_reweight_data()

	This function ensures all the appropriate files are loaded, sets
appropriate attributes necessary for all calling functions/children,
and then calls the function to load in the flux matrix data.

	
class westpa.cli.tools.w_reweight.RWRate(parent)

	Bases: RWReweight

	
subcommand = 'kinetics'

	

	
help_text = 'Generates rate and flux values from a WESTPA simulation via reweighting.'

	

	
default_kinetics_file = 'reweight.h5'

	

	
default_output_file = 'reweight.h5'

	

	
description = 'Calculate average rates from weighted ensemble data using the postanalysis\nreweighting scheme. Bin assignments (usually "assign.h5") and pre-calculated\niteration flux matrices (usually "reweight.h5") data files must have been\npreviously generated using w_reweight matrix (see "w_assign --help" and\n"w_reweight init --help" for information on generating these files).\n\n---\nOutput format\n---\nThe output file (-o/--output, usually "kinrw.h5") contains the following\ndataset:\n\n /avg_rates [state,state]\n (Structured -- see below) State-to-state rates based on entire window of\n iterations selected.\n\n /avg_total_fluxes [state]\n (Structured -- see below) Total fluxes into each state based on entire\n window of iterations selected.\n\n /avg_conditional_fluxes [state,state]\n (Structured -- see below) State-to-state fluxes based on entire window of\n iterations selected.\n\nIf --evolution-mode is specified, then the following additional datasets are\navailable:\n\n /rate_evolution [window][state][state]\n (Structured -- see below). State-to-state rates based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\n /target_flux_evolution [window,state]\n (Structured -- see below). Total flux into a given macro state based on\n windows of iterations of varying width, as in /rate_evolution.\n\n /conditional_flux_evolution [window,state,state]\n (Structured -- see below). State-to-state fluxes based on windows of\n varying width, as in /rate_evolution.\n\nThe structure of these datasets is as follows:\n\n iter_start\n (Integer) Iteration at which the averaging window begins (inclusive).\n\n iter_stop\n (Integer) Iteration at which the averaging window ends (exclusive).\n\n expected\n (Floating-point) Expected (mean) value of the observable as evaluated within\n this window, in units of inverse tau.\n\n ci_lbound\n (Floating-point) Lower bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n ci_ubound\n (Floating-point) Upper bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n stderr\n (Floating-point) The standard error of the mean of the observable\n within this window, in units of inverse tau.\n\n corr_len\n (Integer) Correlation length of the observable within this window, in units\n of tau.\n\nEach of these datasets is also stamped with a number of attributes:\n\n mcbs_alpha\n (Floating-point) Alpha value of confidence intervals. (For example,\n *alpha=0.05* corresponds to a 95% confidence interval.)\n\n mcbs_nsets\n (Integer) Number of bootstrap data sets used in generating confidence\n intervals.\n\n mcbs_acalpha\n (Floating-point) Alpha value for determining correlation lengths.\n\n\n---\nCommand-line options\n---\n '

	

	
w_postanalysis_reweight()

	This function ensures the data is ready to send in to the estimator and
the bootstrapping routine, then does so. Much of this is simply setting
up appropriate args and kwargs, then passing them in to the
‘run_calculation’ function, which sets up future objects to send to the
work manager. The results are returned, and then written to the
appropriate HDF5 dataset.
This function is specific for the rates and fluxes from the reweighting
method.

	
go()

	

	
class westpa.cli.tools.w_reweight.RWStateProbs(parent)

	Bases: RWReweight

	
subcommand = 'probs'

	

	
help_text = 'Calculates color and state probabilities via reweighting.'

	

	
default_kinetics_file = 'reweight.h5'

	

	
description = 'Calculate average populations from weighted ensemble data using the postanalysis\nreweighting scheme. Bin assignments (usually "assign.h5") and pre-calculated\niteration flux matrices (usually "reweight.h5") data files must have been\npreviously generated using w_reweight matrix (see "w_assign --help" and\n"w_reweight init --help" for information on generating these files).\n\n---\nOutput format\n---\n\nThe output file (-o/--output, usually "direct.h5") contains the following\ndataset:\n\n /avg_state_probs [state]\n (Structured -- see below) Population of each state across entire\n range specified.\n\n /avg_color_probs [state]\n (Structured -- see below) Population of each ensemble across entire\n range specified.\n\nIf --evolution-mode is specified, then the following additional datasets are\navailable:\n\n /state_pop_evolution [window][state]\n (Structured -- see below). State populations based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\n /color_prob_evolution [window][state]\n (Structured -- see below). Ensemble populations based on windows of\n iterations of varying width. If --evolution-mode=cumulative, then\n these windows all begin at the iteration specified with\n --start-iter and grow in length by --step-iter for each successive\n element. If --evolution-mode=blocked, then these windows are all of\n width --step-iter (excluding the last, which may be shorter), the first\n of which begins at iteration --start-iter.\n\nThe structure of these datasets is as follows:\n\n iter_start\n (Integer) Iteration at which the averaging window begins (inclusive).\n\n iter_stop\n (Integer) Iteration at which the averaging window ends (exclusive).\n\n expected\n (Floating-point) Expected (mean) value of the observable as evaluated within\n this window, in units of inverse tau.\n\n ci_lbound\n (Floating-point) Lower bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n ci_ubound\n (Floating-point) Upper bound of the confidence interval of the observable\n within this window, in units of inverse tau.\n\n stderr\n (Floating-point) The standard error of the mean of the observable\n within this window, in units of inverse tau.\n\n corr_len\n (Integer) Correlation length of the observable within this window, in units\n of tau.\n\n\nEach of these datasets is also stamped with a number of attributes:\n\n mcbs_alpha\n (Floating-point) Alpha value of confidence intervals. (For example,\n *alpha=0.05* corresponds to a 95% confidence interval.)\n\n mcbs_nsets\n (Integer) Number of bootstrap data sets used in generating confidence\n intervals.\n\n mcbs_acalpha\n (Floating-point) Alpha value for determining correlation lengths.\n\n\n---\nCommand-line options\n---\n'

	

	
w_postanalysis_stateprobs()

	This function ensures the data is ready to send in to the estimator and
the bootstrapping routine, then does so. Much of this is simply setting
up appropriate args and kwargs, then passing them in to the
‘run_calculation’ function, which sets up future objects to send to the
work manager. The results are returned, and then written to the
appropriate HDF5 dataset.
This function is specific for the color (steady-state) and macrostate
probabilities from the reweighting method.

	
go()

	

	
class westpa.cli.tools.w_reweight.RWAll(parent)

	Bases: RWMatrix, RWStateProbs, RWRate

	
subcommand = 'all'

	

	
help_text = 'Runs the full suite, including the generation of the flux matrices.'

	

	
default_kinetics_file = 'reweight.h5'

	

	
default_output_file = 'reweight.h5'

	

	
description = 'A convenience function to run init/kinetics/probs. Bin assignments,\nincluding macrostate definitions, are required. (See\n"w_assign --help" for more information).\n\nFor more information on the individual subcommands this subs in for, run\nw_reweight {init/kinetics/probs} --help.\n\n---\nCommand-line options\n---\n'

	

	
go()

	

	
class westpa.cli.tools.w_reweight.RWAverage(parent)

	Bases: RWStateProbs, RWRate

	
subcommand = 'average'

	

	
help_text = 'Averages and returns fluxes, rates, and color/state populations.'

	

	
default_kinetics_file = 'reweight.h5'

	

	
default_output_file = 'reweight.h5'

	

	
description = 'A convenience function to run kinetics/probs. Bin assignments,\nincluding macrostate definitions, are required. (See\n"w_assign --help" for more information).\n\nFor more information on the individual subcommands this subs in for, run\nw_reweight {kinetics/probs} --help.\n\n---\nCommand-line options\n---\n'

	

	
go()

	

	
class westpa.cli.tools.w_reweight.WReweight

	Bases: WESTMasterCommand, WESTParallelTool

	
prog = 'w_reweight'

	

	
subcommands = [<class 'westpa.cli.tools.w_reweight.RWMatrix'>, <class 'westpa.cli.tools.w_reweight.RWAverage'>, <class 'westpa.cli.tools.w_reweight.RWRate'>, <class 'westpa.cli.tools.w_reweight.RWStateProbs'>, <class 'westpa.cli.tools.w_reweight.RWAll'>]

	

	
subparsers_title = 'reweighting kinetics analysis scheme'

	

	
westpa.cli.tools.w_reweight.entry_point()

	

w_fluxanl

w_fluxanl calculates the probability flux of a weighted ensemble simulation
based on a pre-defined target state. Also calculates confidence interval of
average flux. Monte Carlo bootstrapping techniques are used to account for
autocorrelation between fluxes and/or errors that are not normally distributed.

Overview

usage:

w_fluxanl [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [-W WEST_H5FILE] [-o OUTPUT]
 [--first-iter N_ITER] [--last-iter N_ITER]
 [-a ALPHA] [--autocorrel-alpha ACALPHA] [-N NSETS] [--evol] [--evol-step ESTEP]

Note: All command line arguments are optional for w_fluxanl.

Command-Line Options

See the general command-line tool reference for more
information on the general options.

Input/output options

These arguments allow the user to specify where to read input simulation result
data and where to output calculated progress coordinate probability
distribution data.

Both input and output files are hdf5 format.:

-W, --west-data file
 Read simulation result data from file *file*. (**Default:** The
 hdf5 file specified in the configuration file)

-o, --output file
 Store this tool's output in *file*. (**Default:** The *hdf5* file
 pcpdist.h5)

Iteration range options

Specify the range of iterations over which to construct the progress
coordinate probability distribution.:

--first-iter n_iter
 Construct probability distribution starting with iteration *n_iter*
 (**Default:** 1)

--last-iter n_iter
 Construct probability distribution's time evolution up to (and
 including) iteration *n_iter* (**Default:** Last completed
 iteration)

Confidence interval and bootstrapping options

Specify alpha values of constructed confidence intervals.:

-a alpha
 Calculate a (1 - *alpha*) confidence interval for the mean flux
 (**Default:** 0.05)

--autocorrel-alpha ACalpha
 Identify autocorrelation of fluxes at *ACalpha* significance level.
 Note: Specifying an *ACalpha* level that is too small may result in
 failure to find autocorrelation in noisy flux signals (**Default:**
 Same level as *alpha*)

-N n_sets, --nsets n_sets
 Use *n_sets* samples for bootstrapping (**Default:** Chosen based
 on *alpha*)

--evol
 Calculate the time evolution of flux confidence intervals
 (**Warning:** computationally expensive calculation)

--evol-step estep
 (if ``'--evol'`` specified) Calculate the time evolution of flux
 confidence intervals for every *estep* iterations (**Default:** 1)

Examples

Calculate the time evolution flux every 5 iterations:

w_fluxanl --evol --evol-step 5

Calculate mean flux confidence intervals at 0.01 signicance level and
calculate autocorrelations at 0.05 significance:

w_fluxanl --alpha 0.01 --autocorrel-alpha 0.05

Calculate the mean flux confidence intervals using a custom bootstrap
sample size of 500:

w_fluxanl --n-sets 500

westpa.cli.tools.w_fluxanl module

	
westpa.cli.tools.w_fluxanl.fftconvolve(in1, in2, mode='full', axes=None)

	Convolve two N-dimensional arrays using FFT.

Convolve in1 and in2 using the fast Fourier transform method, with
the output size determined by the mode argument.

This is generally much faster than convolve for large arrays (n > ~500),
but can be slower when only a few output values are needed, and can only
output float arrays (int or object array inputs will be cast to float).

As of v0.19, convolve automatically chooses this method or the direct
method based on an estimation of which is faster.

	Parameters:

	
	in1 (array_like) – First input.

	in2 (array_like) – Second input. Should have the same number of dimensions as in1.

	mode (str {'full', 'valid', 'same'}, optional) – A string indicating the size of the output:

	full
	The output is the full discrete linear convolution
of the inputs. (Default)

	valid
	The output consists only of those elements that do not
rely on the zero-padding. In ‘valid’ mode, either in1 or in2
must be at least as large as the other in every dimension.

	same
	The output is the same size as in1, centered
with respect to the ‘full’ output.

	axes (int or array_like of ints or None, optional) – Axes over which to compute the convolution.
The default is over all axes.

	Returns:

	out – An N-dimensional array containing a subset of the discrete linear
convolution of in1 with in2.

	Return type:

	array

See also

	convolve
	Uses the direct convolution or FFT convolution algorithm depending on which is faster.

	oaconvolve
	Uses the overlap-add method to do convolution, which is generally faster when the input arrays are large and significantly different in size.

Examples

Autocorrelation of white noise is an impulse.

>>> import numpy as np
>>> from scipy import signal
>>> rng = np.random.default_rng()
>>> sig = rng.standard_normal(1000)
>>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')
>>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
>>> ax_mag.set_title('Autocorrelation')
>>> fig.tight_layout()
>>> fig.show()

Gaussian blur implemented using FFT convolution. Notice the dark borders
around the image, due to the zero-padding beyond its boundaries.
The convolve2d function allows for other types of image boundaries,
but is far slower.

>>> from scipy import datasets
>>> face = datasets.face(gray=True)
>>> kernel = np.outer(signal.windows.gaussian(70, 8),
... signal.windows.gaussian(70, 8))
>>> blurred = signal.fftconvolve(face, kernel, mode='same')

>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
... figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_kernel.imshow(kernel, cmap='gray')
>>> ax_kernel.set_title('Gaussian kernel')
>>> ax_kernel.set_axis_off()
>>> ax_blurred.imshow(blurred, cmap='gray')
>>> ax_blurred.set_title('Blurred')
>>> ax_blurred.set_axis_off()
>>> fig.show()

	
westpa.cli.tools.w_fluxanl.warn()

	Issue a warning, or maybe ignore it or raise an exception.

	message
	Text of the warning message.

	category
	The Warning category subclass. Defaults to UserWarning.

	stacklevel
	How far up the call stack to make this warning appear. A value of 2 for
example attributes the warning to the caller of the code calling warn().

	source
	If supplied, the destroyed object which emitted a ResourceWarning

	skip_file_prefixes
	An optional tuple of module filename prefixes indicating frames to skip
during stacklevel computations for stack frame attribution.

	
westpa.cli.tools.w_fluxanl.weight_dtype

	alias of float64

	
westpa.cli.tools.w_fluxanl.n_iter_dtype

	alias of uint32

	
class westpa.cli.tools.w_fluxanl.NewWeightEntry(source_type, weight, prev_seg_id=None, prev_init_pcoord=None, prev_final_pcoord=None, new_init_pcoord=None, target_state_id=None, initial_state_id=None)

	Bases: object

	
NW_SOURCE_RECYCLED = 0

	

	
class westpa.cli.tools.w_fluxanl.WESTTool

	Bases: WESTToolComponent

Base class for WEST command line tools

	
prog = None

	

	
usage = None

	

	
description = None

	

	
epilog = None

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
make_parser(prog=None, usage=None, description=None, epilog=None, args=None)

	

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then call self.go()

	
class westpa.cli.tools.w_fluxanl.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.cli.tools.w_fluxanl.IterRangeSelection(data_manager=None)

	Bases: WESTToolComponent

Select and record limits on iterations used in analysis and/or reporting.
This class provides both the user-facing command-line options and parsing, and
the application-side API for recording limits in HDF5.

HDF5 datasets calculated based on a restricted set of iterations should be tagged
with the following attributes:

	first_iter
	The first iteration included in the calculation.

	last_iter
	One past the last iteration included in the calculation.

	iter_step
	Blocking or sampling period for iterations included in the calculation.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args, override_iter_start=None, override_iter_stop=None, default_iter_step=1)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
iter_block_iter()

	Return an iterable of (block_start,block_end) over the blocks of iterations
selected by –first-iter/–last-iter/–step-iter.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter)
selected by –first-iter/–last-iter/–step-iter.

	
record_data_iter_range(h5object, iter_start=None, iter_stop=None)

	Store attributes iter_start and iter_stop on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data at least for the iteration range specified.

	
check_data_iter_range_equal(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data exactly for the iteration range specified.

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride (in other words, the given iter_step is a multiple of the stride with
which data was recorded).

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, iter_start=None, iter_stop=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(iter_start=None, iter_stop=None, iter_step=None, dtype=None)

	Return a sequence for the given iteration numbers and stride, filling
in missing values from those stored on self. The smallest data type capable of
holding iter_stop is returned unless otherwise specified using the dtype
argument.

	
westpa.cli.tools.w_fluxanl.extract_fluxes(iter_start=None, iter_stop=None, data_manager=None)

	Extract flux values from the WEST HDF5 file for iterations >= iter_start
and < iter_stop, optionally using another data manager instance instead of the
global one returned by westpa.rc.get_data_manager().

Returns a dictionary mapping target names (if available, target index otherwise)
to a 1-D array of type fluxentry_dtype, which contains columns for iteration
number, flux, and count.

	
class westpa.cli.tools.w_fluxanl.WFluxanlTool

	Bases: WESTTool

	
prog = 'w_fluxanl'

	

	
description = 'Extract fluxes into pre-defined target states from WEST data,\naverage, and construct confidence intervals. Monte Carlo bootstrapping\nis used to account for the correlated and possibly non-Gaussian statistical\nerror in flux measurements.\n\nAll non-graphical output (including that to the terminal and HDF5) assumes that\nthe propagation/resampling period ``tau`` is equal to unity; to obtain results\nin familiar units, divide all fluxes and multiply all correlation lengths by\nthe true value of ``tau``.\n'

	

	
output_format_version = 2

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
calc_store_flux_data()

	

	
calc_evol_flux()

	

	
go()

	Perform the analysis associated with this tool.

	
westpa.cli.tools.w_fluxanl.entry_point()

	

westpa.core package

	westpa.core.binning package
	westpa.core.binning module

	westpa.core.binning.assign module

	westpa.core.binning.bins module

	Minimal Adaptive Binning (MAB) Scheme
	westpa.core.binning.mab module

	westpa.core.binning.mab_driver

	westpa.core.binning.mab_manager

	westpa.core.kinetics
	westpa.core.kinetics module

	westpa.core.kinetics.events module

	westpa.core.kinetics.matrates module

	westpa.core.kinetics.rate_averaging module

	westpa.core.propagators
	westpa.core.propagators module

	westpa.core.propagators.executable module

	westpa.core.reweight
	westpa.core.reweight module

	westpa.core.reweight.matrix module

	westpa.core
	westpa.core module

	westpa.core.data_manager module

	westpa.core.extloader module

	westpa.core.h5io module

	westpa.core.progress module

	westpa.core.segment module

	westpa.core.sim_manager module

	westpa.core.states module

	westpa.core.systems module

	westpa.core.textio module

	westpa.core.we_driver module

	westpa.core.wm_ops module

	westpa.core.yamlcfg module

westpa.core.binning package

westpa.core.binning module

	
class westpa.core.binning.NopMapper

	Bases: BinMapper

Put everything into one bin.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.FuncBinMapper(func, nbins, args=None, kwargs=None)

	Bases: BinMapper

Binning using a custom function which must iterate over input coordinate
sets itself.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.PiecewiseBinMapper(functions)

	Bases: BinMapper

Binning using a set of functions returing boolean values; if the Nth function
returns True for a coordinate tuple, then that coordinate is in the Nth bin.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.RectilinearBinMapper(boundaries)

	Bases: BinMapper

Bin into a rectangular grid based on tuples of float values

	
property boundaries

	

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.RecursiveBinMapper(base_mapper, start_index=0)

	Bases: BinMapper

Nest mappers one within another.

	
property labels

	

	
property start_index

	

	
add_mapper(mapper, replaces_bin_at)

	Replace the bin containing the coordinate tuple replaces_bin_at with the
specified mapper.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.VectorizingFuncBinMapper(func, nbins, args=None, kwargs=None)

	Bases: BinMapper

Binning using a custom function which is evaluated once for each (unmasked)
coordinate tuple provided.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.VoronoiBinMapper(dfunc, centers, dfargs=None, dfkwargs=None)

	Bases: BinMapper

A one-dimensional mapper which assigns a multidimensional pcoord to the
closest center based on a distance metric. Both the list of centers and the
distance function must be supplied.

	
assign(coords, mask=None, output=None)

	

	
westpa.core.binning.map_mab(coords, mask, output, *args, **kwargs)

	Binning which adaptively places bins based on the positions of extrema segments and
bottleneck segments, which are where the difference in probability is the greatest
along the progress coordinate. Operates per dimension and places a fixed number of
evenly spaced bins between the segments with the min and max pcoord values. Extrema and
bottleneck segments are assigned their own bins.

	Parameters:

	
	coords (ndarray) – An array with pcoord and weight info.

	mask (ndarray) – Array of 1 (True) and 0 (False), to filter out unwanted segment info.

	output (list) – The main list that, for each segment, holds the bin assignment.

	*args (list) – Variable length arguments.

	**kwargs (dict) – Arbitary keyword arguments. Contains most of the MAB-needed parameters.

	Returns:

	output – The main list that, for each segment, holds the bin assignment.

	Return type:

	list

	
westpa.core.binning.map_binless(coords, mask, output, *args, **kwargs)

	Adaptively groups walkers according to a user-defined grouping function
that is defined externally. Very general implementation but limited to
only a two dimensional progress coordinate (for now).

	
class westpa.core.binning.MABBinMapper(nbins, direction=None, skip=None, bottleneck=True, pca=False, mab_log=False, bin_log=False, bin_log_path='$WEST_SIM_ROOT/binbounds.log')

	Bases: FuncBinMapper

Adaptively place bins in between minimum and maximum segments along
the progress coordinte. Extrema and bottleneck segments are assigned
to their own bins.

	Parameters:

	
	nbins (list of int) – List of int for nbins in each dimension.

	direction (Union(list of int, None), default: None) – List of int for ‘direction’ in each dimension.
Direction options are as follows:

0 : default split at leading and lagging boundaries
1 : split at leading boundary only
-1 : split at lagging boundary only
86 : no splitting at either leading or lagging boundary

	skip (Union(list of int, None), default: None) – List of int for each dimension. Default None for skip=0.
Set to 1 to ‘skip’ running mab in a dimension.

	bottleneck (bool, default: True) – Whether to turn on or off bottleneck walker splitting.

	pca (bool, default: False) – Can be True or False (default) to run PCA on pcoords before bin assignment.

	mab_log (bool, default: False) – Whether to output mab info to west.log.

	bin_log (bool, default: False) – Whether to output mab bin boundaries to bin_log_path file.

	bin_log_path (str, default: "$WEST_SIM_ROOT/binbounds.log") – Path to output bin boundaries.

	
determine_total_bins(nbins_per_dim, direction, skip, bottleneck, **kwargs)

	The following is neccessary because functional bin mappers need to “reserve”
bins and tell the sim manager how many bins they will need to use, this is
determined by taking all direction/skipping info into account.

	Parameters:

	
	nbins_per_dim (int) – Number of total bins in each direction.

	direction (list of int) – Direction in each dimension. See __init__ for more information.

	skip (list of int) – List of 0s and 1s indicating whether to skip each dimension.

	bottleneck (bool) – Whether to include separate bin for bottleneck walker(s).

	**kwargs (dict) – Arbitary keyword arguments. Contains unneeded MAB parameters.

	Returns:

	n_total_bins – Number of total bins.

	Return type:

	int

	
class westpa.core.binning.BinlessMapper(ngroups, ndims, group_function, **group_function_kwargs)

	Bases: FuncBinMapper

Adaptively group walkers according to a user-defined grouping
function that is defined externally.

	
class westpa.core.binning.MABDriver(rc=None, system=None)

	Bases: WEDriver

	
assign(segments, initializing=False)

	Assign segments to initial and final bins, and update the (internal) lists of used and available
initial states. This function is adapted to the MAB scheme, so that the inital and final segments are
sent to the bin mapper at the same time, otherwise the inital and final bin boundaries can be inconsistent.

	
class westpa.core.binning.MABSimManager(rc=None)

	Bases: WESimManager

Subclass of WESimManager, modifying it so bin assignments will be done after all segments are done propagating.

	
initialize_simulation(basis_states, target_states, start_states, segs_per_state=1, suppress_we=False)

	Making sure that that the MABBinMapper is not the outer bin.

	
propagate()

	

	
prepare_iteration()

	

	
class westpa.core.binning.BinlessDriver(rc=None, system=None)

	Bases: WEDriver

	
assign(segments, initializing=False)

	Assign segments to initial and final bins, and update the (internal) lists of used and available
initial states. This function is adapted to the MAB scheme, so that the inital and final segments are
sent to the bin mapper at the same time, otherwise the inital and final bin boundaries can be inconsistent.

	
class westpa.core.binning.BinlessSimManager(rc=None)

	Bases: WESimManager

	
initialize_simulation(basis_states, target_states, start_states, segs_per_state=1, suppress_we=False)

	Initialize a new weighted ensemble simulation, taking segs_per_state initial
states from each of the given basis_states.

w_init is the forward-facing version of this function

	
propagate()

	

	
prepare_iteration()

	

	
westpa.core.binning.accumulate_labeled_populations(weights, bin_assignments, label_assignments, labeled_bin_pops)

	For a set of segments in one iteration, calculate the average population in each bin, with
separation by last-visited macrostate.

	
westpa.core.binning.assign_and_label(nsegs_lb, nsegs_ub, parent_ids, assign, nstates, state_map, last_labels, pcoords, subsample)

	Assign trajectories to bins and last-visted macrostates for each timepoint.

	
westpa.core.binning.accumulate_state_populations_from_labeled(labeled_bin_pops, state_map, state_pops, check_state_map=True)

	

	
westpa.core.binning.assignments_list_to_table(nsegs, nbins, assignments)

	Convert a list of bin assignments (integers) to a boolean table indicating indicating
if a given segment is in a given bin

	
westpa.core.binning.coord_dtype

	alias of float32

	
westpa.core.binning.index_dtype

	alias of uint16

	
class westpa.core.binning.Bin(iterable=None, label=None)

	Bases: set

	
property weight

	Total weight of all walkers in this bin

	
reweight(new_weight)

	Reweight all walkers in this bin so that the total weight is new_weight

westpa.core.binning.assign module

Bin assignment for WEST simulations. This module defines “bin mappers” which take
vectors of coordinates (or rather, coordinate tuples), and assign each a definite
integer value identifying a bin. Critical portions are implemented in a Cython
extension module.

A number of pre-defined bin mappers are available here:

	RectilinearBinMapper, for bins divided by N-dimensional grids

	FuncBinMapper, for functions which directly calculate bin assignments
for a number of coordinate values. This is best used with C/Cython/Numba
functions, or intellegently-tuned numpy-based Python functions.

	VectorizingFuncBinMapper, for functions which calculate a bin
assignment for a single coordinate value. This is best used for arbitrary
Python functions.

	PiecewiseBinMapper, for using a set of boolean-valued functions, one
per bin, to determine assignments. This is likely to be much slower than a
FuncBinMapper or VectorizingFuncBinMapper equipped with an appropriate
function, and its use is discouraged.

One “super-mapper” is available, for assembling more complex bin spaces from
simpler components:

	RecursiveBinMapper, for nesting one set of bins within another.

Users are also free to implement their own mappers. A bin mapper must implement, at
least, an assign(coords, mask=None, output=None) method, which is responsible
for mapping each of the vector of coordinate tuples coords to an integer
(np.uint16) indicating a what bin that coordinate tuple falls into. The optional
mask (a numpy bool array) specifies that some coordinates are to be skipped; this is used,
for instance, by the recursive (nested) bin mapper to minimize the number of calculations
required to definitively assign a coordinate tuple to a bin. Similarly, the optional
output must be an integer (uint16) array of the same length as coords, into which
assignments are written. The assign() function must return a reference to output.
(This is used to avoid allocating many temporary output arrays in complex binning
scenarios.)

A user-defined bin mapper must also make an nbins property available, containing
the total number of bins within the mapper.

	
class westpa.core.binning.assign.Bin(iterable=None, label=None)

	Bases: set

	
property weight

	Total weight of all walkers in this bin

	
reweight(new_weight)

	Reweight all walkers in this bin so that the total weight is new_weight

	
westpa.core.binning.assign.output_map(output, omap, mask)

	For each output for which mask is true, execute output[i] = omap[output[i]]

	
westpa.core.binning.assign.apply_down(func, args, kwargs, coords, mask, output)

	Apply func(coord, *args, **kwargs) to each input coordinate tuple,
skipping any for which mask is false and writing results to output.

	
westpa.core.binning.assign.apply_down_argmin_across(func, args, kwargs, func_output_len, coords, mask, output)

	Apply func(coord, *args, **kwargs) to each input coordinate tuple,
skipping any for which mask is false and writing results to output.

	
westpa.core.binning.assign.rectilinear_assign(coords, mask, output, boundaries, boundlens)

	For bins delimited by sets boundaries on a rectilinear grid (boundaries),
assign coordinates to bins, assuming C ordering of indices within the grid.
boundlens is the number of boundaries in each dimension.

	
westpa.core.binning.assign.index_dtype

	alias of uint16

	
westpa.core.binning.assign.coord_dtype

	alias of float32

	
class westpa.core.binning.assign.BinMapper

	Bases: object

	
hashfunc(*, usedforsecurity=True)

	Returns a sha256 hash object; optionally initialized with a string

	
construct_bins(type_=<class 'westpa.core.binning.bins.Bin'>)

	Construct and return an array of bins of type type

	
pickle_and_hash()

	Pickle this mapper and calculate a hash of the result (thus identifying the
contents of the pickled data), returning a tuple (pickled_data, hash).
This will raise PickleError if this mapper cannot be pickled, in which case
code that would otherwise rely on detecting a topology change must assume
a topology change happened, even if one did not.

	
class westpa.core.binning.assign.NopMapper

	Bases: BinMapper

Put everything into one bin.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.assign.RectilinearBinMapper(boundaries)

	Bases: BinMapper

Bin into a rectangular grid based on tuples of float values

	
property boundaries

	

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.assign.PiecewiseBinMapper(functions)

	Bases: BinMapper

Binning using a set of functions returing boolean values; if the Nth function
returns True for a coordinate tuple, then that coordinate is in the Nth bin.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.assign.FuncBinMapper(func, nbins, args=None, kwargs=None)

	Bases: BinMapper

Binning using a custom function which must iterate over input coordinate
sets itself.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.assign.VectorizingFuncBinMapper(func, nbins, args=None, kwargs=None)

	Bases: BinMapper

Binning using a custom function which is evaluated once for each (unmasked)
coordinate tuple provided.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.assign.VoronoiBinMapper(dfunc, centers, dfargs=None, dfkwargs=None)

	Bases: BinMapper

A one-dimensional mapper which assigns a multidimensional pcoord to the
closest center based on a distance metric. Both the list of centers and the
distance function must be supplied.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.binning.assign.RecursiveBinMapper(base_mapper, start_index=0)

	Bases: BinMapper

Nest mappers one within another.

	
property labels

	

	
property start_index

	

	
add_mapper(mapper, replaces_bin_at)

	Replace the bin containing the coordinate tuple replaces_bin_at with the
specified mapper.

	
assign(coords, mask=None, output=None)

	

westpa.core.binning.bins module

	
class westpa.core.binning.bins.Bin(iterable=None, label=None)

	Bases: set

	
property weight

	Total weight of all walkers in this bin

	
reweight(new_weight)

	Reweight all walkers in this bin so that the total weight is new_weight

Minimal Adaptive Binning (MAB) Scheme

westpa.core.binning.mab module

	
class westpa.core.binning.mab.FuncBinMapper(func, nbins, args=None, kwargs=None)

	Bases: BinMapper

Binning using a custom function which must iterate over input coordinate
sets itself.

	
assign(coords, mask=None, output=None)

	

	
westpa.core.binning.mab.expandvars(path)

	Expand shell variables of form $var and ${var}. Unknown variables
are left unchanged.

	
class westpa.core.binning.mab.MABBinMapper(nbins, direction=None, skip=None, bottleneck=True, pca=False, mab_log=False, bin_log=False, bin_log_path='$WEST_SIM_ROOT/binbounds.log')

	Bases: FuncBinMapper

Adaptively place bins in between minimum and maximum segments along
the progress coordinte. Extrema and bottleneck segments are assigned
to their own bins.

	Parameters:

	
	nbins (list of int) – List of int for nbins in each dimension.

	direction (Union(list of int, None), default: None) – List of int for ‘direction’ in each dimension.
Direction options are as follows:

0 : default split at leading and lagging boundaries
1 : split at leading boundary only
-1 : split at lagging boundary only
86 : no splitting at either leading or lagging boundary

	skip (Union(list of int, None), default: None) – List of int for each dimension. Default None for skip=0.
Set to 1 to ‘skip’ running mab in a dimension.

	bottleneck (bool, default: True) – Whether to turn on or off bottleneck walker splitting.

	pca (bool, default: False) – Can be True or False (default) to run PCA on pcoords before bin assignment.

	mab_log (bool, default: False) – Whether to output mab info to west.log.

	bin_log (bool, default: False) – Whether to output mab bin boundaries to bin_log_path file.

	bin_log_path (str, default: "$WEST_SIM_ROOT/binbounds.log") – Path to output bin boundaries.

	
determine_total_bins(nbins_per_dim, direction, skip, bottleneck, **kwargs)

	The following is neccessary because functional bin mappers need to “reserve”
bins and tell the sim manager how many bins they will need to use, this is
determined by taking all direction/skipping info into account.

	Parameters:

	
	nbins_per_dim (int) – Number of total bins in each direction.

	direction (list of int) – Direction in each dimension. See __init__ for more information.

	skip (list of int) – List of 0s and 1s indicating whether to skip each dimension.

	bottleneck (bool) – Whether to include separate bin for bottleneck walker(s).

	**kwargs (dict) – Arbitary keyword arguments. Contains unneeded MAB parameters.

	Returns:

	n_total_bins – Number of total bins.

	Return type:

	int

	
westpa.core.binning.mab.map_mab(coords, mask, output, *args, **kwargs)

	Binning which adaptively places bins based on the positions of extrema segments and
bottleneck segments, which are where the difference in probability is the greatest
along the progress coordinate. Operates per dimension and places a fixed number of
evenly spaced bins between the segments with the min and max pcoord values. Extrema and
bottleneck segments are assigned their own bins.

	Parameters:

	
	coords (ndarray) – An array with pcoord and weight info.

	mask (ndarray) – Array of 1 (True) and 0 (False), to filter out unwanted segment info.

	output (list) – The main list that, for each segment, holds the bin assignment.

	*args (list) – Variable length arguments.

	**kwargs (dict) – Arbitary keyword arguments. Contains most of the MAB-needed parameters.

	Returns:

	output – The main list that, for each segment, holds the bin assignment.

	Return type:

	list

westpa.core.binning.mab_driver

	
class westpa.core.binning.mab_driver.WEDriver(rc=None, system=None)

	Bases: object

A class implemented Huber & Kim’s weighted ensemble algorithm over Segment objects.
This class handles all binning, recycling, and preparation of new Segment objects for the
next iteration. Binning is accomplished using system.bin_mapper, and per-bin target counts
are from system.bin_target_counts.

The workflow is as follows:

	Call new_iteration() every new iteration, providing any recycling targets that are
in force and any available initial states for recycling.

	Call assign() to assign segments to bins based on their initial and end points. This
returns the number of walkers that were recycled.

	Call run_we(), optionally providing a set of initial states that will be used to
recycle walkers.

Note the presence of flux_matrix, transition_matrix,
current_iter_segments, next_iter_segments, recycling_segments,
initial_binning, final_binning, next_iter_binning, and new_weights (to be documented soon).

	
weight_split_threshold = 2.0

	

	
weight_merge_cutoff = 1.0

	

	
largest_allowed_weight = 1.0

	

	
smallest_allowed_weight = 1e-310

	

	
process_config()

	

	
property next_iter_segments

	Newly-created segments for the next iteration

	
property current_iter_segments

	Segments for the current iteration

	
property next_iter_assignments

	Bin assignments (indices) for initial points of next iteration.

	
property current_iter_assignments

	Bin assignments (indices) for endpoints of current iteration.

	
property recycling_segments

	Segments designated for recycling

	
property n_recycled_segs

	Number of segments recycled this iteration

	
property n_istates_needed

	Number of initial states needed to support recycling for this iteration

	
check_threshold_configs()

	Check to see if weight thresholds parameters are valid

	
clear()

	Explicitly delete all Segment-related state.

	
new_iteration(initial_states=None, target_states=None, new_weights=None, bin_mapper=None, bin_target_counts=None)

	Prepare for a new iteration. initial_states is a sequence of all InitialState objects valid
for use in to generating new segments for the next iteration (after the one being begun with the call to
new_iteration); that is, these are states available to recycle to. Target states which generate recycling events
are specified in target_states, a sequence of TargetState objects. Both initial_states
and target_states may be empty as required.

The optional new_weights is a sequence of NewWeightEntry objects which will
be used to construct the initial flux matrix.

The given bin_mapper will be used for assignment, and bin_target_counts used for splitting/merging
target counts; each will be obtained from the system object if omitted or None.

	
add_initial_states(initial_states)

	Add newly-prepared initial states to the pool available for recycling.

	
property all_initial_states

	Return an iterator over all initial states (available or used)

	
assign(segments, initializing=False)

	Assign segments to initial and final bins, and update the (internal) lists of used and available
initial states. If initializing is True, then the “final” bin assignments will
be identical to the initial bin assignments, a condition required for seeding a new iteration from
pre-existing segments.

	
populate_initial(initial_states, weights, system=None)

	Create walkers for a new weighted ensemble simulation.

One segment is created for each provided initial state, then binned and split/merged
as necessary. After this function is called, next_iter_segments will yield the new
segments to create, used_initial_states will contain data about which of the
provided initial states were used, and avail_initial_states will contain data about
which initial states were unused (because their corresponding walkers were merged
out of existence).

	
rebin_current(parent_segments)

	Reconstruct walkers for the current iteration based on (presumably) new binning.
The previous iteration’s segments must be provided (as parent_segments) in order
to update endpoint types appropriately.

	
construct_next()

	Construct walkers for the next iteration, by running weighted ensemble recycling
and bin/split/merge on the segments previously assigned to bins using assign.
Enough unused initial states must be present in self.avail_initial_states for every recycled
walker to be assigned an initial state.

After this function completes, self.flux_matrix contains a valid flux matrix for this
iteration (including any contributions from recycling from the previous iteration), and
self.next_iter_segments contains a list of segments ready for the next iteration,
with appropriate values set for weight, endpoint type, parent walkers, and so on.

	
class westpa.core.binning.mab_driver.MABDriver(rc=None, system=None)

	Bases: WEDriver

	
assign(segments, initializing=False)

	Assign segments to initial and final bins, and update the (internal) lists of used and available
initial states. This function is adapted to the MAB scheme, so that the inital and final segments are
sent to the bin mapper at the same time, otherwise the inital and final bin boundaries can be inconsistent.

westpa.core.binning.mab_manager

	
class westpa.core.binning.mab_manager.MABBinMapper(nbins, direction=None, skip=None, bottleneck=True, pca=False, mab_log=False, bin_log=False, bin_log_path='$WEST_SIM_ROOT/binbounds.log')

	Bases: FuncBinMapper

Adaptively place bins in between minimum and maximum segments along
the progress coordinte. Extrema and bottleneck segments are assigned
to their own bins.

	Parameters:

	
	nbins (list of int) – List of int for nbins in each dimension.

	direction (Union(list of int, None), default: None) – List of int for ‘direction’ in each dimension.
Direction options are as follows:

0 : default split at leading and lagging boundaries
1 : split at leading boundary only
-1 : split at lagging boundary only
86 : no splitting at either leading or lagging boundary

	skip (Union(list of int, None), default: None) – List of int for each dimension. Default None for skip=0.
Set to 1 to ‘skip’ running mab in a dimension.

	bottleneck (bool, default: True) – Whether to turn on or off bottleneck walker splitting.

	pca (bool, default: False) – Can be True or False (default) to run PCA on pcoords before bin assignment.

	mab_log (bool, default: False) – Whether to output mab info to west.log.

	bin_log (bool, default: False) – Whether to output mab bin boundaries to bin_log_path file.

	bin_log_path (str, default: "$WEST_SIM_ROOT/binbounds.log") – Path to output bin boundaries.

	
determine_total_bins(nbins_per_dim, direction, skip, bottleneck, **kwargs)

	The following is neccessary because functional bin mappers need to “reserve”
bins and tell the sim manager how many bins they will need to use, this is
determined by taking all direction/skipping info into account.

	Parameters:

	
	nbins_per_dim (int) – Number of total bins in each direction.

	direction (list of int) – Direction in each dimension. See __init__ for more information.

	skip (list of int) – List of 0s and 1s indicating whether to skip each dimension.

	bottleneck (bool) – Whether to include separate bin for bottleneck walker(s).

	**kwargs (dict) – Arbitary keyword arguments. Contains unneeded MAB parameters.

	Returns:

	n_total_bins – Number of total bins.

	Return type:

	int

	
class westpa.core.binning.mab_manager.WESimManager(rc=None)

	Bases: object

	
process_config()

	

	
register_callback(hook, function, priority=0)

	Registers a callback to execute during the given hook into the simulation loop. The optional
priority is used to order when the function is called relative to other registered callbacks.

	
invoke_callbacks(hook, *args, **kwargs)

	

	
load_plugins(plugins=None)

	

	
report_bin_statistics(bins, target_states, save_summary=False)

	

	
get_bstate_pcoords(basis_states, label='basis')

	For each of the given basis_states, calculate progress coordinate values
as necessary. The HDF5 file is not updated.

	
report_basis_states(basis_states, label='basis')

	

	
report_target_states(target_states)

	

	
initialize_simulation(basis_states, target_states, start_states, segs_per_state=1, suppress_we=False)

	Initialize a new weighted ensemble simulation, taking segs_per_state initial
states from each of the given basis_states.

w_init is the forward-facing version of this function

	
prepare_iteration()

	

	
finalize_iteration()

	Clean up after an iteration and prepare for the next.

	
get_istate_futures()

	Add n_states initial states to the internal list of initial states assigned to
recycled particles. Spare states are used if available, otherwise new states are created.
If created new initial states requires generation, then a set of futures is returned
representing work manager tasks corresponding to the necessary generation work.

	
propagate()

	

	
save_bin_data()

	Calculate and write flux and transition count matrices to HDF5. Population and rate matrices
are likely useless at the single-tau level and are no longer written.

	
check_propagation()

	Check for failures in propagation or initial state generation, and raise an exception
if any are found.

	
run_we()

	Run the weighted ensemble algorithm based on the binning in self.final_bins and
the recycled particles in self.to_recycle, creating and committing the next iteration’s
segments to storage as well.

	
prepare_new_iteration()

	Commit data for the coming iteration to the HDF5 file.

	
run()

	

	
prepare_run()

	Prepare a new run.

	
finalize_run()

	Perform cleanup at the normal end of a run

	
pre_propagation()

	

	
post_propagation()

	

	
pre_we()

	

	
post_we()

	

	
westpa.core.binning.mab_manager.grouper(n, iterable, fillvalue=None)

	Collect data into fixed-length chunks or blocks

	
class westpa.core.binning.mab_manager.InitialState(state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None, basis_auxref=None)

	Bases: object

Describes an initial state for a new trajectory. These are generally constructed by
appropriate modification of a basis state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	basis_state_id – Identifier of the basis state from which this state was
generated, or None.

	basis_state – The BasisState from which this state was generated, or None.

	iter_created – Iteration in which this state was generated (0 for
simulation initialization).

	iter_used – Iteration in which this state was used to initiate a
trajectory (None for unused).

	istate_type – Integer describing the type of this initial state
(ISTATE_TYPE_BASIS for direct use of a basis state,
ISTATE_TYPE_GENERATED for a state generated from a basis state,
ISTATE_TYPE_RESTART for a state corresponding to the endpoint
of a segment in another simulation, or
ISTATE_TYPE_START for a state generated from a start state).

	istate_status – Integer describing whether this initial state has been properly
prepared.

	pcoord – The representative progress coordinate of this state.

	
ISTATE_TYPE_UNSET = 0

	

	
ISTATE_TYPE_BASIS = 1

	

	
ISTATE_TYPE_GENERATED = 2

	

	
ISTATE_TYPE_RESTART = 3

	

	
ISTATE_TYPE_START = 4

	

	
ISTATE_UNUSED = 0

	

	
ISTATE_STATUS_PENDING = 0

	

	
ISTATE_STATUS_PREPARED = 1

	

	
ISTATE_STATUS_FAILED = 2

	

	
istate_types = {'ISTATE_TYPE_BASIS': 1, 'ISTATE_TYPE_GENERATED': 2, 'ISTATE_TYPE_RESTART': 3, 'ISTATE_TYPE_START': 4, 'ISTATE_TYPE_UNSET': 0}

	

	
istate_type_names = {0: 'ISTATE_TYPE_UNSET', 1: 'ISTATE_TYPE_BASIS', 2: 'ISTATE_TYPE_GENERATED', 3: 'ISTATE_TYPE_RESTART', 4: 'ISTATE_TYPE_START'}

	

	
istate_statuses = {'ISTATE_STATUS_FAILED': 2, 'ISTATE_STATUS_PENDING': 0, 'ISTATE_STATUS_PREPARED': 1}

	

	
istate_status_names = {0: 'ISTATE_STATUS_PENDING', 1: 'ISTATE_STATUS_PREPARED', 2: 'ISTATE_STATUS_FAILED'}

	

	
as_numpy_record()

	

	
westpa.core.binning.mab_manager.pare_basis_initial_states(basis_states, initial_states, segments=None)

	Given iterables of basis and initial states (and optionally segments that use them),
return minimal sets (as in __builtins__.set) of states needed to describe the history of the given
segments an initial states.

	
class westpa.core.binning.mab_manager.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.core.binning.mab_manager.MABSimManager(rc=None)

	Bases: WESimManager

Subclass of WESimManager, modifying it so bin assignments will be done after all segments are done propagating.

	
initialize_simulation(basis_states, target_states, start_states, segs_per_state=1, suppress_we=False)

	Making sure that that the MABBinMapper is not the outer bin.

	
propagate()

	

	
prepare_iteration()

	

westpa.core.kinetics package

westpa.core.kinetics module

Kinetics analysis library

	
class westpa.core.kinetics.RateAverager(bin_mapper, system=None, data_manager=None, work_manager=None)

	Bases: object

Calculate bin-to-bin kinetic properties (fluxes, rates, populations) at
1-tau resolution

	
extract_data(iter_indices)

	Extract data from the data_manger and place in dict mirroring the same
underlying layout.

	
task_generator(iter_start, iter_stop, block_size)

	

	
calculate(iter_start=None, iter_stop=None, n_blocks=1, queue_size=1)

	Read the HDF5 file and collect flux matrices and population vectors
for each bin for each iteration in the range [iter_start, iter_stop). Break
the calculation into n_blocks blocks. If the calculation is broken up into
more than one block, queue_size specifies the maxmimum number of tasks in
the work queue.

	
westpa.core.kinetics.calculate_labeled_fluxes(nstates, weights, parent_ids, micro_assignments, traj_assignments, fluxes)

	

	
westpa.core.kinetics.labeled_flux_to_rate(labeled_fluxes, labeled_pops, output=None)

	Convert a labeled flux matrix and corresponding labeled bin populations to
a labeled rate matrix.

	
westpa.core.kinetics.calculate_labeled_fluxes_alllags(nstates, weights, parent_ids, micro_assignments, traj_assignments, fluxes)

	

	
westpa.core.kinetics.nested_to_flat_matrix(input)

	Convert nested flux/rate matrix into a flat supermatrix.

	
westpa.core.kinetics.nested_to_flat_vector(input)

	Convert nested labeled population vector into a flat vector.

	
westpa.core.kinetics.flat_to_nested_matrix(nstates, nbins, input)

	Convert flat supermatrix into nested matrix.

	
westpa.core.kinetics.flat_to_nested_vector(nstates, nbins, input)

	Convert flat “supervector” into nested vector.

	
westpa.core.kinetics.find_macrostate_transitions(nstates, weights, label_assignments, state_assignments, dt, state, macro_fluxes, macro_counts, target_fluxes, target_counts, durations)

	

	
westpa.core.kinetics.sequence_macro_flux_to_rate(dataset, pops, istate, jstate, pairwise=True, stride=None)

	Convert a sequence of macrostate fluxes and corresponding list of trajectory ensemble populations
to a sequence of rate matrices.

If the optional pairwise is true (the default), then rates are normalized according to the
relative probability of the initial state among the pair of states (initial, final); this is
probably what you want, as these rates will then depend only on the definitions of the states
involved (and never the remaining states). Otherwise (``pairwise’’ is false), the rates are
normalized according the probability of the initial state among all other states.

	
class westpa.core.kinetics.WKinetics

	Bases: object

	
w_kinetics()

	

westpa.core.kinetics.events module

	
westpa.core.kinetics.events.weight_dtype

	alias of float64

	
westpa.core.kinetics.events.index_dtype

	alias of uint16

	
westpa.core.kinetics.events.find_macrostate_transitions(nstates, weights, label_assignments, state_assignments, dt, state, macro_fluxes, macro_counts, target_fluxes, target_counts, durations)

	

	
class westpa.core.kinetics.events.WKinetics

	Bases: object

	
w_kinetics()

	

westpa.core.kinetics.matrates module

Routines for implementing Letteri et al.’s macrostate-to-macrostate rate calculations
using extrapolation to steady-state populations from average rate matrices

Internally, “labeled” objects (bin populations labeled by history, rate matrix elements labeled
by history) are stored as nested arrays – e.g. rates[initial_label, final_label, initial_bin, final_bin].
These are converted to the flat forms required for, say, eigenvalue calculations internally, and the
results converted back. This is because these conversions are not expensive, and saves users of
this code from having to know how the flattened indexing works (something I screwed up all too
easily during development) – mcz

	
westpa.core.kinetics.matrates.weight_dtype

	alias of float64

	
westpa.core.kinetics.matrates.calculate_labeled_fluxes(nstates, weights, parent_ids, micro_assignments, traj_assignments, fluxes)

	

	
westpa.core.kinetics.matrates.calculate_labeled_fluxes_alllags(nstates, weights, parent_ids, micro_assignments, traj_assignments, fluxes)

	

	
westpa.core.kinetics.matrates.labeled_flux_to_rate(labeled_fluxes, labeled_pops, output=None)

	Convert a labeled flux matrix and corresponding labeled bin populations to
a labeled rate matrix.

	
westpa.core.kinetics.matrates.nested_to_flat_matrix(input)

	Convert nested flux/rate matrix into a flat supermatrix.

	
westpa.core.kinetics.matrates.nested_to_flat_vector(input)

	Convert nested labeled population vector into a flat vector.

	
westpa.core.kinetics.matrates.flat_to_nested_vector(nstates, nbins, input)

	Convert flat “supervector” into nested vector.

	
exception westpa.core.kinetics.matrates.ConsistencyWarning

	Bases: UserWarning

	
westpa.core.kinetics.matrates.get_steady_state(rates)

	Get steady state solution for a rate matrix. As an optimization, returns the
flattened labeled population vector (of length nstates*nbins); to convert to the
nested vector used for storage, use nested_to_flat_vector().

	
westpa.core.kinetics.matrates.get_macrostate_rates(labeled_rates, labeled_pops, extrapolate=True)

	Using a labeled rate matrix and labeled bin populations, calculate the steady state
probability distribution and consequent state-to-state rates.

Returns (ss, macro_rates), where ss is the steady-state probability distribution
and macro_rates is the state-to-state rate matrix.

	
westpa.core.kinetics.matrates.estimate_rates(nbins, state_labels, weights, parent_ids, bin_assignments, label_assignments, state_map, labeled_pops, all_lags=False, labeled_fluxes=None, labeled_rates=None, unlabeled_rates=None)

	Estimate fluxes and rates over multiple iterations. The number of iterations is determined by how many
vectors of weights, parent IDs, bin assignments, and label assignments are passed.

If all_lags is true, then the average is over all possible lags within the length-N window given, otherwise
simply the length N lag.

Returns labeled flux matrix, labeled rate matrix, and unlabeled rate matrix.

westpa.core.kinetics.rate_averaging module

	
westpa.core.kinetics.rate_averaging.namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)

	Returns a new subclass of tuple with named fields.

>>> Point = namedtuple('Point', ['x', 'y'])
>>> Point.__doc__ # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with positional args or keywords
>>> p[0] + p[1] # indexable like a plain tuple
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
Point(x=100, y=22)

	
class westpa.core.kinetics.rate_averaging.zip_longest

	Bases: object

zip_longest(iter1 [,iter2 […]], [fillvalue=None]) –> zip_longest object

Return a zip_longest object whose .__next__() method returns a tuple where
the i-th element comes from the i-th iterable argument. The .__next__()
method continues until the longest iterable in the argument sequence
is exhausted and then it raises StopIteration. When the shorter iterables
are exhausted, the fillvalue is substituted in their place. The fillvalue
defaults to None or can be specified by a keyword argument.

	
westpa.core.kinetics.rate_averaging.flux_assign(weights, init_assignments, final_assignments, flux_matrix)

	

	
westpa.core.kinetics.rate_averaging.pop_assign(weights, assignments, populations)

	

	
westpa.core.kinetics.rate_averaging.calc_rates(fluxes, populations, rates, mask)

	Calculate a rate matrices from flux and population matrices. A matrix of the same
shape as fluxes, is also produced, to be used for generating a mask for the rate
matrices where initial state populations are zero.

	
class westpa.core.kinetics.rate_averaging.StreamingStats1D

	Bases: object

Calculate mean and variance of a series of one-dimensional arrays of shape (nbins,)
using an online algorithm. The statistics are accumulated along what would be axis=0 if the
input arrays were stacked vertically.

This code has been adapted from:
http://www.johndcook.com/skewness_kurtosis.html

	
M1

	

	
M2

	

	
mean

	

	
n

	

	
update(x, mask)

	Update the running set of statistics given

	Parameters:

	
	x (1d ndarray) – values from a single observation

	mask (1d ndarray) – A uint8 array to exclude entries from the accumulated statistics.

	
var

	

	
class westpa.core.kinetics.rate_averaging.StreamingStats2D

	Bases: object

Calculate mean and variance of a series of two-dimensional arrays of shape (nbins, nbins)
using an online algorithm. The statistics are accumulated along what would be axis=0 if the
input arrays were stacked vertically.

This code has been adapted from:
http://www.johndcook.com/skewness_kurtosis.html

	
M1

	

	
M2

	

	
mean

	

	
n

	

	
update(x, mask)

	Update the running set of statistics given

	Parameters:

	
	x (2d ndarray) – values from a single observation

	mask (2d ndarray) – A uint8 array to exclude entries from the accumulated statistics.

	
var

	

	
class westpa.core.kinetics.rate_averaging.StreamingStatsTuple(M1, M2, n)

	Bases: tuple

Create new instance of StreamingStatsTuple(M1, M2, n)

	
M1

	Alias for field number 0

	
M2

	Alias for field number 1

	
n

	Alias for field number 2

	
westpa.core.kinetics.rate_averaging.grouper(n, iterable, fillvalue=None)

	Collect data into fixed-length chunks or blocks

	
westpa.core.kinetics.rate_averaging.tuple2stats(stat_tuple)

	

	
westpa.core.kinetics.rate_averaging.process_iter_chunk(bin_mapper, iter_indices, iter_data=None)

	Calculate the flux matrices and populations of a set of iterations specified
by iter_indices. Optionally provide the necessary arrays to perform the calculation
in iter_data. Otherwise get data from the data_manager directly.

	
class westpa.core.kinetics.rate_averaging.RateAverager(bin_mapper, system=None, data_manager=None, work_manager=None)

	Bases: object

Calculate bin-to-bin kinetic properties (fluxes, rates, populations) at
1-tau resolution

	
extract_data(iter_indices)

	Extract data from the data_manger and place in dict mirroring the same
underlying layout.

	
task_generator(iter_start, iter_stop, block_size)

	

	
calculate(iter_start=None, iter_stop=None, n_blocks=1, queue_size=1)

	Read the HDF5 file and collect flux matrices and population vectors
for each bin for each iteration in the range [iter_start, iter_stop). Break
the calculation into n_blocks blocks. If the calculation is broken up into
more than one block, queue_size specifies the maxmimum number of tasks in
the work queue.

westpa.core.propagators package

westpa.core.propagators module

	
westpa.core.propagators.blocked_iter(blocksize, iterable, fillvalue=None)

	

	
class westpa.core.propagators.WESTPropagator(rc=None)

	Bases: object

	
prepare_iteration(n_iter, segments)

	Perform any necessary per-iteration preparation. This is run by the work manager.

	
finalize_iteration(n_iter, segments)

	Perform any necessary post-iteration cleanup. This is run by the work manager.

	
get_pcoord(state)

	Get the progress coordinate of the given basis or initial state.

	
gen_istate(basis_state, initial_state)

	Generate a new initial state from the given basis state.

	
propagate(segments)

	Propagate one or more segments, including any necessary per-iteration setup and teardown for this propagator.

	
clear_basis_initial_states()

	

	
update_basis_initial_states(basis_states, initial_states)

	

westpa.core.propagators.executable module

	
class westpa.core.propagators.executable.BytesIO(initial_bytes=b'')

	Bases: _BufferedIOBase

Buffered I/O implementation using an in-memory bytes buffer.

	
close()

	Disable all I/O operations.

	
closed

	True if the file is closed.

	
flush()

	Does nothing.

	
getbuffer()

	Get a read-write view over the contents of the BytesIO object.

	
getvalue()

	Retrieve the entire contents of the BytesIO object.

	
isatty()

	Always returns False.

BytesIO objects are not connected to a TTY-like device.

	
read(size=-1, /)

	Read at most size bytes, returned as a bytes object.

If the size argument is negative, read until EOF is reached.
Return an empty bytes object at EOF.

	
read1(size=-1, /)

	Read at most size bytes, returned as a bytes object.

If the size argument is negative or omitted, read until EOF is reached.
Return an empty bytes object at EOF.

	
readable()

	Returns True if the IO object can be read.

	
readinto(buffer, /)

	Read bytes into buffer.

Returns number of bytes read (0 for EOF), or None if the object
is set not to block and has no data to read.

	
readline(size=-1, /)

	Next line from the file, as a bytes object.

Retain newline. A non-negative size argument limits the maximum
number of bytes to return (an incomplete line may be returned then).
Return an empty bytes object at EOF.

	
readlines(size=None, /)

	List of bytes objects, each a line from the file.

Call readline() repeatedly and return a list of the lines so read.
The optional size argument, if given, is an approximate bound on the
total number of bytes in the lines returned.

	
seek(pos, whence=0, /)

	Change stream position.

	Seek to byte offset pos relative to position indicated by whence:
	0 Start of stream (the default). pos should be >= 0;
1 Current position - pos may be negative;
2 End of stream - pos usually negative.

Returns the new absolute position.

	
seekable()

	Returns True if the IO object can be seeked.

	
tell()

	Current file position, an integer.

	
truncate(size=None, /)

	Truncate the file to at most size bytes.

Size defaults to the current file position, as returned by tell().
The current file position is unchanged. Returns the new size.

	
writable()

	Returns True if the IO object can be written.

	
write(b, /)

	Write bytes to file.

Return the number of bytes written.

	
writelines(lines, /)

	Write lines to the file.

Note that newlines are not added. lines can be any iterable object
producing bytes-like objects. This is equivalent to calling write() for
each element.

	
westpa.core.propagators.executable.get_object(object_name, path=None)

	Attempt to load the given object, using additional path information if given.

	
class westpa.core.propagators.executable.WESTPropagator(rc=None)

	Bases: object

	
prepare_iteration(n_iter, segments)

	Perform any necessary per-iteration preparation. This is run by the work manager.

	
finalize_iteration(n_iter, segments)

	Perform any necessary post-iteration cleanup. This is run by the work manager.

	
get_pcoord(state)

	Get the progress coordinate of the given basis or initial state.

	
gen_istate(basis_state, initial_state)

	Generate a new initial state from the given basis state.

	
propagate(segments)

	Propagate one or more segments, including any necessary per-iteration setup and teardown for this propagator.

	
clear_basis_initial_states()

	

	
update_basis_initial_states(basis_states, initial_states)

	

	
class westpa.core.propagators.executable.BasisState(label, probability, pcoord=None, auxref=None, state_id=None)

	Bases: object

Describes an basis (micro)state. These basis states are used to generate
initial states for new trajectories, either at the beginning of the simulation
(i.e. at w_init) or due to recycling.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	probability – Probability of this state to be selected when creating a
new trajectory.

	pcoord – The representative progress coordinate of this state.

	auxref – A user-provided (string) reference for locating data associated
with this state (usually a filesystem path).

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile)

	Read a file defining basis states. Each line defines a state, and contains a label, the probability,
and optionally a data reference, separated by whitespace, as in:

unbound 1.0

or:

unbound_0 0.6 state0.pdb
unbound_1 0.4 state1.pdb

	
as_numpy_record()

	Return the data for this state as a numpy record array.

	
class westpa.core.propagators.executable.InitialState(state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None, basis_auxref=None)

	Bases: object

Describes an initial state for a new trajectory. These are generally constructed by
appropriate modification of a basis state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	basis_state_id – Identifier of the basis state from which this state was
generated, or None.

	basis_state – The BasisState from which this state was generated, or None.

	iter_created – Iteration in which this state was generated (0 for
simulation initialization).

	iter_used – Iteration in which this state was used to initiate a
trajectory (None for unused).

	istate_type – Integer describing the type of this initial state
(ISTATE_TYPE_BASIS for direct use of a basis state,
ISTATE_TYPE_GENERATED for a state generated from a basis state,
ISTATE_TYPE_RESTART for a state corresponding to the endpoint
of a segment in another simulation, or
ISTATE_TYPE_START for a state generated from a start state).

	istate_status – Integer describing whether this initial state has been properly
prepared.

	pcoord – The representative progress coordinate of this state.

	
ISTATE_TYPE_UNSET = 0

	

	
ISTATE_TYPE_BASIS = 1

	

	
ISTATE_TYPE_GENERATED = 2

	

	
ISTATE_TYPE_RESTART = 3

	

	
ISTATE_TYPE_START = 4

	

	
ISTATE_UNUSED = 0

	

	
ISTATE_STATUS_PENDING = 0

	

	
ISTATE_STATUS_PREPARED = 1

	

	
ISTATE_STATUS_FAILED = 2

	

	
istate_types = {'ISTATE_TYPE_BASIS': 1, 'ISTATE_TYPE_GENERATED': 2, 'ISTATE_TYPE_RESTART': 3, 'ISTATE_TYPE_START': 4, 'ISTATE_TYPE_UNSET': 0}

	

	
istate_type_names = {0: 'ISTATE_TYPE_UNSET', 1: 'ISTATE_TYPE_BASIS', 2: 'ISTATE_TYPE_GENERATED', 3: 'ISTATE_TYPE_RESTART', 4: 'ISTATE_TYPE_START'}

	

	
istate_statuses = {'ISTATE_STATUS_FAILED': 2, 'ISTATE_STATUS_PENDING': 0, 'ISTATE_STATUS_PREPARED': 1}

	

	
istate_status_names = {0: 'ISTATE_STATUS_PENDING', 1: 'ISTATE_STATUS_PREPARED', 2: 'ISTATE_STATUS_FAILED'}

	

	
as_numpy_record()

	

	
westpa.core.propagators.executable.return_state_type(state_obj)

	Convinience function for returning the state ID and type of the state_obj pointer

	
class westpa.core.propagators.executable.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
westpa.core.propagators.executable.check_bool(value, action='warn')

	Check that the given value is boolean in type. If not, either
raise a warning (if action=='warn') or an exception (action=='raise').

	
westpa.core.propagators.executable.load_trajectory(folder)

	Load trajectory from folder using mdtraj and return a mdtraj.Trajectory
object. The folder should contain a trajectory and a topology file (with a recognizable
extension) that is supported by mdtraj. The topology file is optional if the
trajectory file contains topology data (e.g., HDF5 format).

	
westpa.core.propagators.executable.safe_extract(tar, path='.', members=None, *, numeric_owner=False)

	

	
westpa.core.propagators.executable.pcoord_loader(fieldname, pcoord_return_filename, destobj, single_point)

	Read progress coordinate data into the pcoord field on destobj.
An exception will be raised if the data is malformed. If single_point is true,
then only one (N-dimensional) point will be read, otherwise system.pcoord_len points
will be read.

	
westpa.core.propagators.executable.aux_data_loader(fieldname, data_filename, segment, single_point)

	

	
westpa.core.propagators.executable.npy_data_loader(fieldname, coord_file, segment, single_point)

	

	
westpa.core.propagators.executable.pickle_data_loader(fieldname, coord_file, segment, single_point)

	

	
westpa.core.propagators.executable.trajectory_loader(fieldname, coord_folder, segment, single_point)

	Load data from the trajectory return. coord_folder should be the path to a folder
containing trajectory files. segment is the Segment object that the data is associated with.
Please see load_trajectory for more details. single_point is not used by this loader.

	
westpa.core.propagators.executable.restart_loader(fieldname, restart_folder, segment, single_point)

	Load data from the restart return. The loader will tar all files in restart_folder
and store it in the per-iteration HDF5 file. segment is the Segment object that
the data is associated with. single_point is not used by this loader.

	
westpa.core.propagators.executable.restart_writer(path, segment)

	Prepare the necessary files from the per-iteration HDF5 file to run segment.

	
westpa.core.propagators.executable.seglog_loader(fieldname, log_file, segment, single_point)

	Load data from the log return. The loader will tar all files in log_file
and store it in the per-iteration HDF5 file. segment is the Segment object that
the data is associated with. single_point is not used by this loader.

	
class westpa.core.propagators.executable.ExecutablePropagator(rc=None)

	Bases: WESTPropagator

	
ENV_CURRENT_ITER = 'WEST_CURRENT_ITER'

	

	
ENV_CURRENT_SEG_ID = 'WEST_CURRENT_SEG_ID'

	

	
ENV_CURRENT_SEG_DATA_REF = 'WEST_CURRENT_SEG_DATA_REF'

	

	
ENV_CURRENT_SEG_INITPOINT = 'WEST_CURRENT_SEG_INITPOINT_TYPE'

	

	
ENV_PARENT_SEG_ID = 'WEST_PARENT_ID'

	

	
ENV_PARENT_DATA_REF = 'WEST_PARENT_DATA_REF'

	

	
ENV_BSTATE_ID = 'WEST_BSTATE_ID'

	

	
ENV_BSTATE_DATA_REF = 'WEST_BSTATE_DATA_REF'

	

	
ENV_ISTATE_ID = 'WEST_ISTATE_ID'

	

	
ENV_ISTATE_DATA_REF = 'WEST_ISTATE_DATA_REF'

	

	
ENV_STRUCT_DATA_REF = 'WEST_STRUCT_DATA_REF'

	

	
ENV_RAND16 = 'WEST_RAND16'

	

	
ENV_RAND32 = 'WEST_RAND32'

	

	
ENV_RAND64 = 'WEST_RAND64'

	

	
ENV_RAND128 = 'WEST_RAND128'

	

	
ENV_RANDFLOAT = 'WEST_RANDFLOAT'

	

	
static makepath(template, template_args=None, expanduser=True, expandvars=True, abspath=False, realpath=False)

	

	
random_val_env_vars()

	Return a set of environment variables containing random seeds. These are returned
as a dictionary, suitable for use in os.environ.update() or as the env argument to
subprocess.Popen(). Every child process executed by exec_child() gets these.

	
exec_child(executable, environ=None, stdin=None, stdout=None, stderr=None, cwd=None)

	Execute a child process with the environment set from the current environment, the
values of self.addtl_child_environ, the random numbers returned by self.random_val_env_vars, and
the given environ (applied in that order). stdin/stdout/stderr are optionally redirected.

This function waits on the child process to finish, then returns
(rc, rusage), where rc is the child’s return code and rusage is the resource usage tuple from os.wait4()

	
exec_child_from_child_info(child_info, template_args, environ)

	

	
update_args_env_basis_state(template_args, environ, basis_state)

	

	
update_args_env_initial_state(template_args, environ, initial_state)

	

	
update_args_env_iter(template_args, environ, n_iter)

	

	
update_args_env_segment(template_args, environ, segment)

	

	
template_args_for_segment(segment)

	

	
exec_for_segment(child_info, segment, addtl_env=None)

	Execute a child process with environment and template expansion from the given
segment.

	
exec_for_iteration(child_info, n_iter, addtl_env=None)

	Execute a child process with environment and template expansion from the given
iteration number.

	
exec_for_basis_state(child_info, basis_state, addtl_env=None)

	Execute a child process with environment and template expansion from the
given basis state

	
exec_for_initial_state(child_info, initial_state, addtl_env=None)

	Execute a child process with environment and template expansion from the given
initial state.

	
prepare_file_system(segment, environ)

	

	
setup_dataset_return(segment=None, subset_keys=None)

	Set up temporary files and environment variables that point to them for segment
runners to return data. segment is the Segment object that the return data
is associated with. subset_keys specifies the names of a subset of data to be
returned.

	
retrieve_dataset_return(state, return_files, del_return_files, single_point)

	Retrieve returned data from the temporary locations directed by the environment variables.
state is a Segment, BasisState , or InitialState``object that the return data is
associated with. ``return_files is a dict where the keys are the dataset names and
the values are the paths to the temporarily files that contain the returned data.
del_return_files is a dict where the keys are the names of datasets to be deleted
(if the corresponding value is set to True) once the data is retrieved.

	
get_pcoord(state)

	Get the progress coordinate of the given basis or initial state.

	
gen_istate(basis_state, initial_state)

	Generate a new initial state from the given basis state.

	
prepare_iteration(n_iter, segments)

	Perform any necessary per-iteration preparation. This is run by the work manager.

	
finalize_iteration(n_iter, segments)

	Perform any necessary post-iteration cleanup. This is run by the work manager.

	
propagate(segments)

	Propagate one or more segments, including any necessary per-iteration setup and teardown for this propagator.

westpa.core.reweight package

westpa.core.reweight module

Function(s) for the postanalysis toolkit

	
westpa.core.reweight.stats_process(bin_assignments, weights, fluxes, populations, trans, mask, interval='timepoint')

	

	
westpa.core.reweight.reweight_for_c(rows, cols, obs, flux, insert, indices, nstates, nbins, state_labels, state_map, nfbins, istate, jstate, stride, bin_last_state_map, bin_state_map, return_obs, obs_threshold=1)

	

	
class westpa.core.reweight.FluxMatrix

	Bases: object

	
w_postanalysis_matrix()

	

westpa.core.reweight.matrix module

	
westpa.core.reweight.matrix.weight_dtype

	alias of float64

	
westpa.core.reweight.matrix.index_dtype

	alias of uint16

	
westpa.core.reweight.matrix.stats_process(bin_assignments, weights, fluxes, populations, trans, mask, interval='timepoint')

	

	
westpa.core.reweight.matrix.calc_stats(bin_assignments, weights, fluxes, populations, trans, mask, sampling_frequency)

	

	
class westpa.core.reweight.matrix.FluxMatrix

	Bases: object

	
w_postanalysis_matrix()

	

westpa.core modules

westpa.core module

westpa.core.data_manager module

HDF5 data manager for WEST.

Original HDF5 implementation: Joseph W. Kaus
Current implementation: Matthew C. Zwier

WEST exclusively uses the cross-platform, self-describing file format HDF5
for data storage. This ensures that data is stored efficiently and portably
in a manner that is relatively straightforward for other analysis tools
(perhaps written in C/C++/Fortran) to access.

	The data is laid out in HDF5 as follows:
	
	summary – overall summary data for the simulation

	
	/iterations/ – data for individual iterations, one group per iteration under /iterations
	
	
	iter_00000001/ – data for iteration 1
	
	seg_index – overall information about segments in the iteration, including weight

	pcoord – progress coordinate data organized as [seg_id][time][dimension]

	wtg_parents – data used to reconstruct the split/merge history of trajectories

	recycling – flux and event count for recycled particles, on a per-target-state basis

	auxdata/ – auxiliary datasets (data stored on the ‘data’ field of Segment objects)

The file root object has an integer attribute ‘west_file_format_version’ which can be used to
determine how to access data even as the file format (i.e. organization of data within HDF5 file)
evolves.

	Version history:
	
	Version 9
	
	Basis states are now saved as iter_segid instead of just segid as a pointer label.

	Initial states are also saved in the iteration 0 file, with a negative sign.

	Version 8
	
	Added external links to trajectory files in iterations/iter_* groups, if the HDF5
framework was used.

	Added an iter group for the iteration 0 to store conformations of basis states.

	Version 7
	
	Removed bin_assignments, bin_populations, and bin_rates from iteration group.

	Added new_segments subgroup to iteration group

	Version 6
	
	???

	Version 5
	
	moved iter_* groups into a top-level iterations/ group,

	added in-HDF5 storage for basis states, target states, and generated states

	
class westpa.core.data_manager.attrgetter(attr, /, *attrs)

	Bases: object

Return a callable object that fetches the given attribute(s) from its operand.
After f = attrgetter(‘name’), the call f(r) returns r.name.
After g = attrgetter(‘name’, ‘date’), the call g(r) returns (r.name, r.date).
After h = attrgetter(‘name.first’, ‘name.last’), the call h(r) returns
(r.name.first, r.name.last).

	
westpa.core.data_manager.relpath(path, start=None)

	Return a relative version of a path

	
westpa.core.data_manager.dirname(p)

	Returns the directory component of a pathname

	
class westpa.core.data_manager.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.core.data_manager.BasisState(label, probability, pcoord=None, auxref=None, state_id=None)

	Bases: object

Describes an basis (micro)state. These basis states are used to generate
initial states for new trajectories, either at the beginning of the simulation
(i.e. at w_init) or due to recycling.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	probability – Probability of this state to be selected when creating a
new trajectory.

	pcoord – The representative progress coordinate of this state.

	auxref – A user-provided (string) reference for locating data associated
with this state (usually a filesystem path).

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile)

	Read a file defining basis states. Each line defines a state, and contains a label, the probability,
and optionally a data reference, separated by whitespace, as in:

unbound 1.0

or:

unbound_0 0.6 state0.pdb
unbound_1 0.4 state1.pdb

	
as_numpy_record()

	Return the data for this state as a numpy record array.

	
class westpa.core.data_manager.TargetState(label, pcoord, state_id=None)

	Bases: object

Describes a target state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	pcoord – The representative progress coordinate of this state.

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile, dtype)

	Read a file defining target states. Each line defines a state, and contains a label followed
by a representative progress coordinate value, separated by whitespace, as in:

bound 0.02

for a single target and one-dimensional progress coordinates or:

bound 2.7 0.0
drift 100 50.0

for two targets and a two-dimensional progress coordinate.

	
class westpa.core.data_manager.InitialState(state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None, basis_auxref=None)

	Bases: object

Describes an initial state for a new trajectory. These are generally constructed by
appropriate modification of a basis state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	basis_state_id – Identifier of the basis state from which this state was
generated, or None.

	basis_state – The BasisState from which this state was generated, or None.

	iter_created – Iteration in which this state was generated (0 for
simulation initialization).

	iter_used – Iteration in which this state was used to initiate a
trajectory (None for unused).

	istate_type – Integer describing the type of this initial state
(ISTATE_TYPE_BASIS for direct use of a basis state,
ISTATE_TYPE_GENERATED for a state generated from a basis state,
ISTATE_TYPE_RESTART for a state corresponding to the endpoint
of a segment in another simulation, or
ISTATE_TYPE_START for a state generated from a start state).

	istate_status – Integer describing whether this initial state has been properly
prepared.

	pcoord – The representative progress coordinate of this state.

	
ISTATE_TYPE_UNSET = 0

	

	
ISTATE_TYPE_BASIS = 1

	

	
ISTATE_TYPE_GENERATED = 2

	

	
ISTATE_TYPE_RESTART = 3

	

	
ISTATE_TYPE_START = 4

	

	
ISTATE_UNUSED = 0

	

	
ISTATE_STATUS_PENDING = 0

	

	
ISTATE_STATUS_PREPARED = 1

	

	
ISTATE_STATUS_FAILED = 2

	

	
istate_types = {'ISTATE_TYPE_BASIS': 1, 'ISTATE_TYPE_GENERATED': 2, 'ISTATE_TYPE_RESTART': 3, 'ISTATE_TYPE_START': 4, 'ISTATE_TYPE_UNSET': 0}

	

	
istate_type_names = {0: 'ISTATE_TYPE_UNSET', 1: 'ISTATE_TYPE_BASIS', 2: 'ISTATE_TYPE_GENERATED', 3: 'ISTATE_TYPE_RESTART', 4: 'ISTATE_TYPE_START'}

	

	
istate_statuses = {'ISTATE_STATUS_FAILED': 2, 'ISTATE_STATUS_PENDING': 0, 'ISTATE_STATUS_PREPARED': 1}

	

	
istate_status_names = {0: 'ISTATE_STATUS_PENDING', 1: 'ISTATE_STATUS_PREPARED', 2: 'ISTATE_STATUS_FAILED'}

	

	
as_numpy_record()

	

	
class westpa.core.data_manager.NewWeightEntry(source_type, weight, prev_seg_id=None, prev_init_pcoord=None, prev_final_pcoord=None, new_init_pcoord=None, target_state_id=None, initial_state_id=None)

	Bases: object

	
NW_SOURCE_RECYCLED = 0

	

	
class westpa.core.data_manager.ExecutablePropagator(rc=None)

	Bases: WESTPropagator

	
ENV_CURRENT_ITER = 'WEST_CURRENT_ITER'

	

	
ENV_CURRENT_SEG_ID = 'WEST_CURRENT_SEG_ID'

	

	
ENV_CURRENT_SEG_DATA_REF = 'WEST_CURRENT_SEG_DATA_REF'

	

	
ENV_CURRENT_SEG_INITPOINT = 'WEST_CURRENT_SEG_INITPOINT_TYPE'

	

	
ENV_PARENT_SEG_ID = 'WEST_PARENT_ID'

	

	
ENV_PARENT_DATA_REF = 'WEST_PARENT_DATA_REF'

	

	
ENV_BSTATE_ID = 'WEST_BSTATE_ID'

	

	
ENV_BSTATE_DATA_REF = 'WEST_BSTATE_DATA_REF'

	

	
ENV_ISTATE_ID = 'WEST_ISTATE_ID'

	

	
ENV_ISTATE_DATA_REF = 'WEST_ISTATE_DATA_REF'

	

	
ENV_STRUCT_DATA_REF = 'WEST_STRUCT_DATA_REF'

	

	
ENV_RAND16 = 'WEST_RAND16'

	

	
ENV_RAND32 = 'WEST_RAND32'

	

	
ENV_RAND64 = 'WEST_RAND64'

	

	
ENV_RAND128 = 'WEST_RAND128'

	

	
ENV_RANDFLOAT = 'WEST_RANDFLOAT'

	

	
static makepath(template, template_args=None, expanduser=True, expandvars=True, abspath=False, realpath=False)

	

	
random_val_env_vars()

	Return a set of environment variables containing random seeds. These are returned
as a dictionary, suitable for use in os.environ.update() or as the env argument to
subprocess.Popen(). Every child process executed by exec_child() gets these.

	
exec_child(executable, environ=None, stdin=None, stdout=None, stderr=None, cwd=None)

	Execute a child process with the environment set from the current environment, the
values of self.addtl_child_environ, the random numbers returned by self.random_val_env_vars, and
the given environ (applied in that order). stdin/stdout/stderr are optionally redirected.

This function waits on the child process to finish, then returns
(rc, rusage), where rc is the child’s return code and rusage is the resource usage tuple from os.wait4()

	
exec_child_from_child_info(child_info, template_args, environ)

	

	
update_args_env_basis_state(template_args, environ, basis_state)

	

	
update_args_env_initial_state(template_args, environ, initial_state)

	

	
update_args_env_iter(template_args, environ, n_iter)

	

	
update_args_env_segment(template_args, environ, segment)

	

	
template_args_for_segment(segment)

	

	
exec_for_segment(child_info, segment, addtl_env=None)

	Execute a child process with environment and template expansion from the given
segment.

	
exec_for_iteration(child_info, n_iter, addtl_env=None)

	Execute a child process with environment and template expansion from the given
iteration number.

	
exec_for_basis_state(child_info, basis_state, addtl_env=None)

	Execute a child process with environment and template expansion from the
given basis state

	
exec_for_initial_state(child_info, initial_state, addtl_env=None)

	Execute a child process with environment and template expansion from the given
initial state.

	
prepare_file_system(segment, environ)

	

	
setup_dataset_return(segment=None, subset_keys=None)

	Set up temporary files and environment variables that point to them for segment
runners to return data. segment is the Segment object that the return data
is associated with. subset_keys specifies the names of a subset of data to be
returned.

	
retrieve_dataset_return(state, return_files, del_return_files, single_point)

	Retrieve returned data from the temporary locations directed by the environment variables.
state is a Segment, BasisState , or InitialState``object that the return data is
associated with. ``return_files is a dict where the keys are the dataset names and
the values are the paths to the temporarily files that contain the returned data.
del_return_files is a dict where the keys are the names of datasets to be deleted
(if the corresponding value is set to True) once the data is retrieved.

	
get_pcoord(state)

	Get the progress coordinate of the given basis or initial state.

	
gen_istate(basis_state, initial_state)

	Generate a new initial state from the given basis state.

	
prepare_iteration(n_iter, segments)

	Perform any necessary per-iteration preparation. This is run by the work manager.

	
finalize_iteration(n_iter, segments)

	Perform any necessary post-iteration cleanup. This is run by the work manager.

	
propagate(segments)

	Propagate one or more segments, including any necessary per-iteration setup and teardown for this propagator.

	
westpa.core.data_manager.makepath(template, template_args=None, expanduser=True, expandvars=True, abspath=False, realpath=False)

	

	
class westpa.core.data_manager.flushing_lock(lock, fileobj)

	Bases: object

	
class westpa.core.data_manager.expiring_flushing_lock(lock, flush_method, nextsync)

	Bases: object

	
westpa.core.data_manager.seg_id_dtype

	alias of int64

	
westpa.core.data_manager.n_iter_dtype

	alias of uint32

	
westpa.core.data_manager.weight_dtype

	alias of float64

	
westpa.core.data_manager.utime_dtype

	alias of float64

	
westpa.core.data_manager.seg_status_dtype

	alias of uint8

	
westpa.core.data_manager.seg_initpoint_dtype

	alias of uint8

	
westpa.core.data_manager.seg_endpoint_dtype

	alias of uint8

	
westpa.core.data_manager.istate_type_dtype

	alias of uint8

	
westpa.core.data_manager.istate_status_dtype

	alias of uint8

	
westpa.core.data_manager.nw_source_dtype

	alias of uint8

	
class westpa.core.data_manager.WESTDataManager(rc=None)

	Bases: object

Data manager for assisiting the reading and writing of WEST data from/to HDF5 files.

	
default_iter_prec = 8

	

	
default_we_h5filename = 'west.h5'

	

	
default_we_h5file_driver = None

	

	
default_flush_period = 60

	

	
default_aux_compression_threshold = 1048576

	

	
binning_hchunksize = 4096

	

	
table_scan_chunksize = 1024

	

	
flushing_lock()

	

	
expiring_flushing_lock()

	

	
process_config()

	

	
property system

	

	
property closed

	

	
iter_group_name(n_iter, absolute=True)

	

	
require_iter_group(n_iter)

	Get the group associated with n_iter, creating it if necessary.

	
del_iter_group(n_iter)

	

	
get_iter_group(n_iter)

	

	
get_seg_index(n_iter)

	

	
property current_iteration

	

	
open_backing(mode=None)

	Open the (already-created) HDF5 file named in self.west_h5filename.

	
prepare_backing()

	Create new HDF5 file

	
close_backing()

	

	
flush_backing()

	

	
save_target_states(tstates, n_iter=None)

	Save the given target states in the HDF5 file; they will be used for the next iteration to
be propagated. A complete set is required, even if nominally appending to an existing set,
which simplifies the mapping of IDs to the table.

	
find_tstate_group(n_iter)

	

	
find_ibstate_group(n_iter)

	

	
get_target_states(n_iter)

	Return a list of Target objects representing the target (sink) states that are in use for iteration n_iter.
Future iterations are assumed to continue from the most recent set of states.

	
create_ibstate_group(basis_states, n_iter=None)

	Create the group used to store basis states and initial states (whose definitions are always
coupled). This group is hard-linked into all iteration groups that use these basis and
initial states.

	
create_ibstate_iter_h5file(basis_states)

	Create the per-iteration HDF5 file for the basis states (i.e., iteration 0).
This special treatment is needed so that the analysis tools can access basis states
more easily.

	
update_iter_h5file(n_iter, segments)

	Write out the per-iteration HDF5 file with given segments and add an external link to it
in the main HDF5 file (west.h5) if the link is not present.

	
get_basis_states(n_iter=None)

	Return a list of BasisState objects representing the basis states that are in use for iteration n_iter.

	
create_initial_states(n_states, n_iter=None)

	Create storage for n_states initial states associated with iteration n_iter, and
return bare InitialState objects with only state_id set.

	
update_initial_states(initial_states, n_iter=None)

	Save the given initial states in the HDF5 file

	
get_initial_states(n_iter=None)

	

	
get_segment_initial_states(segments, n_iter=None)

	Retrieve all initial states referenced by the given segments.

	
get_unused_initial_states(n_states=None, n_iter=None)

	Retrieve any prepared but unused initial states applicable to the given iteration.
Up to n_states states are returned; if n_states is None, then all unused states
are returned.

	
prepare_iteration(n_iter, segments)

	Prepare for a new iteration by creating space to store the new iteration’s data.
The number of segments, their IDs, and their lineage must be determined and included
in the set of segments passed in.

	
update_iter_group_links(n_iter)

	Update the per-iteration hard links pointing to the tables of target and initial/basis states for the
given iteration. These links are not used by this class, but are remarkably convenient for third-party
analysis tools and hdfview.

	
get_iter_summary(n_iter=None)

	

	
update_iter_summary(summary, n_iter=None)

	

	
del_iter_summary(min_iter)

	

	
update_segments(n_iter, segments)

	Update segment information in the HDF5 file; all prior information for each
segment is overwritten, except for parent and weight transfer information.

	
get_segments(n_iter=None, seg_ids=None, load_pcoords=True)

	Return the given (or all) segments from a given iteration.

If the optional parameter load_auxdata is true, then all auxiliary datasets
available are loaded and mapped onto the data dictionary of each segment. If
load_auxdata is None, then use the default self.auto_load_auxdata, which can
be set by the option load_auxdata in the [data] section of west.cfg. This
essentially requires as much RAM as there is per-iteration auxiliary data, so this
behavior is not on by default.

	
prepare_segment_restarts(segments, basis_states=None, initial_states=None)

	Prepare the necessary folder and files given the data stored in parent per-iteration HDF5 file
for propagating the simulation. basis_states and initial_states should be provided if the
segments are newly created

	
get_all_parent_ids(n_iter)

	

	
get_parent_ids(n_iter, seg_ids=None)

	Return a sequence of the parent IDs of the given seg_ids.

	
get_weights(n_iter, seg_ids)

	Return the weights associated with the given seg_ids

	
get_child_ids(n_iter, seg_id)

	Return the seg_ids of segments who have the given segment as a parent.

	
get_children(segment)

	Return all segments which have the given segment as a parent

	
prepare_run()

	

	
finalize_run()

	

	
save_new_weight_data(n_iter, new_weights)

	Save a set of NewWeightEntry objects to HDF5. Note that this should
be called for the iteration in which the weights appear in their
new locations (e.g. for recycled walkers, the iteration following
recycling).

	
get_new_weight_data(n_iter)

	

	
find_bin_mapper(hashval)

	Check to see if the given has value is in the binning table. Returns the index in the
bin data tables if found, or raises KeyError if not.

	
get_bin_mapper(hashval)

	Look up the given hash value in the binning table, unpickling and returning the corresponding
bin mapper if available, or raising KeyError if not.

	
save_bin_mapper(hashval, pickle_data)

	Store the given mapper in the table of saved mappers. If the mapper cannot be stored,
PickleError will be raised. Returns the index in the bin data tables where the mapper is stored.

	
save_iter_binning(n_iter, hashval, pickled_mapper, target_counts)

	Save information about the binning used to generate segments for iteration n_iter.

	
westpa.core.data_manager.normalize_dataset_options(dsopts, path_prefix='', n_iter=0)

	

	
westpa.core.data_manager.create_dataset_from_dsopts(group, dsopts, shape=None, dtype=None, data=None, autocompress_threshold=None, n_iter=None)

	

	
westpa.core.data_manager.require_dataset_from_dsopts(group, dsopts, shape=None, dtype=None, data=None, autocompress_threshold=None, n_iter=None)

	

	
westpa.core.data_manager.calc_chunksize(shape, dtype, max_chunksize=262144)

	Calculate a chunk size for HDF5 data, anticipating that access will slice
along lower dimensions sooner than higher dimensions.

westpa.core.extloader module

	
westpa.core.extloader.load_module(module_name, path=None)

	Load and return the given module, recursively loading containing packages as necessary.

	
westpa.core.extloader.get_object(object_name, path=None)

	Attempt to load the given object, using additional path information if given.

westpa.core.h5io module

Miscellaneous routines to help with HDF5 input and output of WEST-related data.

	
class westpa.core.h5io.Trajectory(xyz, topology, time=None, unitcell_lengths=None, unitcell_angles=None)

	Bases: object

Container object for a molecular dynamics trajectory

A Trajectory represents a collection of one or more molecular structures,
generally (but not necessarily) from a molecular dynamics trajectory. The
Trajectory stores a number of fields describing the system through time,
including the cartesian coordinates of each atoms (xyz), the topology
of the molecular system (topology), and information about the
unitcell if appropriate (unitcell_vectors, unitcell_length,
unitcell_angles).

A Trajectory should generally be constructed by loading a file from disk.
Trajectories can be loaded from (and saved to) the PDB, XTC, TRR, DCD,
binpos, NetCDF or MDTraj HDF5 formats.

Trajectory supports fancy indexing, so you can extract one or more frames
from a Trajectory as a separate trajectory. For example, to form a
trajectory with every other frame, you can slice with traj[::2].

Trajectory uses the nanometer, degree & picosecond unit system.

Examples

>>> # loading a trajectory
>>> import mdtraj as md
>>> md.load('trajectory.xtc', top='native.pdb')
<mdtraj.Trajectory with 1000 frames, 22 atoms at 0x1058a73d0>

>>> # slicing a trajectory
>>> t = md.load('trajectory.h5')
>>> print(t)
<mdtraj.Trajectory with 100 frames, 22 atoms>
>>> print(t[::2])
<mdtraj.Trajectory with 50 frames, 22 atoms>

>>> # calculating the average distance between two atoms
>>> import mdtraj as md
>>> import numpy as np
>>> t = md.load('trajectory.h5')
>>> np.mean(np.sqrt(np.sum((t.xyz[:, 0, :] - t.xyz[:, 21, :])**2, axis=1)))

See also

	mdtraj.load
	High-level function that loads files and returns an md.Trajectory

	
n_frames

	
	Type:

	int

	
n_atoms

	
	Type:

	int

	
n_residues

	
	Type:

	int

	
time

	
	Type:

	np.ndarray, shape=(n_frames,)

	
timestep

	
	Type:

	float

	
topology

	
	Type:

	md.Topology

	
top

	
	Type:

	md.Topology

	
xyz

	
	Type:

	np.ndarray, shape=(n_frames, n_atoms, 3)

	
unitcell_vectors

	
	Type:

	{np.ndarray, shape=(n_frames, 3, 3), None}

	
unitcell_lengths

	
	Type:

	{np.ndarray, shape=(n_frames, 3), None}

	
unitcell_angles

	
	Type:

	{np.ndarray, shape=(n_frames, 3), None}

	
property n_frames

	Number of frames in the trajectory

	Returns:

	n_frames – The number of frames in the trajectory

	Return type:

	int

	
property n_atoms

	Number of atoms in the trajectory

	Returns:

	n_atoms – The number of atoms in the trajectory

	Return type:

	int

	
property n_residues

	Number of residues (amino acids) in the trajectory

	Returns:

	n_residues – The number of residues in the trajectory’s topology

	Return type:

	int

	
property n_chains

	Number of chains in the trajectory

	Returns:

	n_chains – The number of chains in the trajectory’s topology

	Return type:

	int

	
property top

	Alias for self.topology, describing the organization of atoms into residues, bonds, etc

	Returns:

	topology – The topology object, describing the organization of atoms into
residues, bonds, etc

	Return type:

	md.Topology

	
property timestep

	Timestep between frames, in picoseconds

	Returns:

	timestep – The timestep between frames, in picoseconds.

	Return type:

	float

	
property unitcell_vectors

	The vectors that define the shape of the unit cell in each frame

	Returns:

	vectors – Vectors defining the shape of the unit cell in each frame.
The semantics of this array are that the shape of the unit cell
in frame i are given by the three vectors, value[i, 0, :],
value[i, 1, :], and value[i, 2, :].

	Return type:

	np.ndarray, shape(n_frames, 3, 3)

	
property unitcell_volumes

	Volumes of unit cell for each frame.

	Returns:

	volumes – Volumes of the unit cell in each frame, in nanometers^3, or None
if the Trajectory contains no unitcell information.

	Return type:

	{np.ndarray, shape=(n_frames), None}

	
superpose(reference, frame=0, atom_indices=None, ref_atom_indices=None, parallel=True)

	Superpose each conformation in this trajectory upon a reference

	Parameters:

	
	reference (md.Trajectory) – Align self to a particular frame in reference

	frame (int) – The index of the conformation in reference to align to.

	atom_indices (array_like, or None) – The indices of the atoms to superpose. If not
supplied, all atoms will be used.

	ref_atom_indices (array_like, or None) – Use these atoms on the reference structure. If not supplied,
the same atom indices will be used for this trajectory and the
reference one.

	parallel (bool) – Use OpenMP to run the superposition in parallel over multiple cores

	Return type:

	self

	
join(other, check_topology=True, discard_overlapping_frames=False)

	Join two trajectories together along the time/frame axis.

This method joins trajectories along the time axis, giving a new trajectory
of length equal to the sum of the lengths of self and other.
It can also be called by using self + other

	Parameters:

	
	other (Trajectory or list of Trajectory) – One or more trajectories to join with this one. These trajectories
are appended to the end of this trajectory.

	check_topology (bool) – Ensure that the topology of self and other are identical before
joining them. If false, the resulting trajectory will have the
topology of self.

	discard_overlapping_frames (bool, optional) – If True, compare coordinates at trajectory edges to discard overlapping
frames. Default: False.

See also

	stack
	join two trajectories along the atom axis

	
stack(other, keep_resSeq=True)

	Stack two trajectories along the atom axis

This method joins trajectories along the atom axis, giving a new trajectory
with a number of atoms equal to the sum of the number of atoms in
self and other.

Notes

The resulting trajectory will have the unitcell and time information
the left operand.

Examples

>>> t1 = md.load('traj1.h5')
>>> t2 = md.load('traj2.h5')
>>> # even when t2 contains no unitcell information
>>> t2.unitcell_vectors = None
>>> stacked = t1.stack(t2)
>>> # the stacked trajectory inherits the unitcell information
>>> # from the first trajectory
>>> np.all(stacked.unitcell_vectors == t1.unitcell_vectors)
True

	Parameters:

	
	other (Trajectory) – The other trajectory to join

	keep_resSeq (bool, optional, default=True) – see `mdtraj.core.topology.Topology.join` method documentation

See also

	join
	join two trajectories along the time/frame axis.

	
slice(key, copy=True)

	Slice trajectory, by extracting one or more frames into a separate object

This method can also be called using index bracket notation, i.e
traj[1] == traj.slice(1)

	Parameters:

	
	key ({int, np.ndarray, slice}) – The slice to take. Can be either an int, a list of ints, or a slice
object.

	copy (bool, default=True) – Copy the arrays after slicing. If you set this to false, then if
you modify a slice, you’ll modify the original array since they
point to the same data.

	
property topology

	Topology of the system, describing the organization of atoms into residues, bonds, etc

	Returns:

	topology – The topology object, describing the organization of atoms into
residues, bonds, etc

	Return type:

	md.Topology

	
property xyz

	Cartesian coordinates of each atom in each simulation frame

	Returns:

	xyz – A three dimensional numpy array, with the cartesian coordinates
of each atoms in each frame.

	Return type:

	np.ndarray, shape=(n_frames, n_atoms, 3)

	
property unitcell_lengths

	Lengths that define the shape of the unit cell in each frame.

	Returns:

	lengths – Lengths of the unit cell in each frame, in nanometers, or None
if the Trajectory contains no unitcell information.

	Return type:

	{np.ndarray, shape=(n_frames, 3), None}

	
property unitcell_angles

	Angles that define the shape of the unit cell in each frame.

	Returns:

	lengths – The angles between the three unitcell vectors in each frame,
alpha, beta, and gamma. alpha' gives the angle
between vectors ``b and c, beta gives the angle between
vectors c and a, and gamma gives the angle between
vectors a and b. The angles are in degrees.

	Return type:

	np.ndarray, shape=(n_frames, 3)

	
property time

	The simulation time corresponding to each frame, in picoseconds

	Returns:

	time – The simulation time corresponding to each frame, in picoseconds

	Return type:

	np.ndarray, shape=(n_frames,)

	
openmm_positions(frame)

	OpenMM-compatable positions of a single frame.

Examples

>>> t = md.load('trajectory.h5')
>>> context.setPositions(t.openmm_positions(0))

	Parameters:

	frame (int) – The index of frame of the trajectory that you wish to extract

	Returns:

	positions – The cartesian coordinates of specific trajectory frame, formatted
for input to OpenMM

	Return type:

	list

	
openmm_boxes(frame)

	OpenMM-compatable box vectors of a single frame.

Examples

>>> t = md.load('trajectory.h5')
>>> context.setPeriodicBoxVectors(t.openmm_positions(0))

	Parameters:

	frame (int) – Return box for this single frame.

	Returns:

	box – The periodic box vectors for this frame, formatted for input to
OpenMM.

	Return type:

	tuple

	
static load(filenames, **kwargs)

	Load a trajectory from disk

	Parameters:

	
	filenames ({path-like, [path-like]}) – Either a path or list of paths

	extension (As requested by the various load functions -- it depends on the)

	
save(filename, **kwargs)

	Save trajectory to disk, in a format determined by the filename extension

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory. The extension will
be parsed and will control the format.

	lossy (bool) – For .h5 or .lh5, whether or not to use compression.

	no_models (bool) – For .pdb. TODO: Document this?

	force_overwrite (bool) – If filename already exists, overwrite it.

	
save_hdf5(filename, force_overwrite=True)

	Save trajectory to MDTraj HDF5 format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	
save_lammpstrj(filename, force_overwrite=True)

	Save trajectory to LAMMPS custom dump format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	
save_xyz(filename, force_overwrite=True)

	Save trajectory to .xyz format.

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	
save_pdb(filename, force_overwrite=True, bfactors=None)

	Save trajectory to RCSB PDB format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	bfactors (array_like, default=None, shape=(n_frames, n_atoms) or (n_atoms,)) – Save bfactors with pdb file. If the array is two dimensional it should
contain a bfactor for each atom in each frame of the trajectory.
Otherwise, the same bfactor will be saved in each frame.

	
save_xtc(filename, force_overwrite=True)

	Save trajectory to Gromacs XTC format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	
save_trr(filename, force_overwrite=True)

	Save trajectory to Gromacs TRR format

Notes

Only the xyz coordinates and the time are saved, the velocities
and forces in the trr will be zeros

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	
save_dcd(filename, force_overwrite=True)

	Save trajectory to CHARMM/NAMD DCD format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filenames, if its already there

	
save_dtr(filename, force_overwrite=True)

	Save trajectory to DESMOND DTR format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filenames, if its already there

	
save_binpos(filename, force_overwrite=True)

	Save trajectory to AMBER BINPOS format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	
save_mdcrd(filename, force_overwrite=True)

	Save trajectory to AMBER mdcrd format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	
save_netcdf(filename, force_overwrite=True)

	Save trajectory in AMBER NetCDF format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if it’s already there

	
save_netcdfrst(filename, force_overwrite=True)

	Save trajectory in AMBER NetCDF restart format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the restart

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if it’s already there

Notes

NetCDF restart files can only store a single frame. If only one frame
exists, “filename” will be written. Otherwise, “filename.#” will be
written, where # is a zero-padded number from 1 to the total number of
frames in the trajectory

	
save_amberrst7(filename, force_overwrite=True)

	Save trajectory in AMBER ASCII restart format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the restart

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if it’s already there

Notes

Amber restart files can only store a single frame. If only one frame
exists, “filename” will be written. Otherwise, “filename.#” will be
written, where # is a zero-padded number from 1 to the total number of
frames in the trajectory

	
save_lh5(filename, force_overwrite=True)

	Save trajectory in deprecated MSMBuilder2 LH5 (lossy HDF5) format.

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if it’s already there

	
save_gro(filename, force_overwrite=True, precision=3)

	Save trajectory in Gromacs .gro format

	Parameters:

	
	filename (path-like) – Path to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at that filename if it exists

	precision (int, default=3) – The number of decimal places to use for coordinates in GRO file

	
save_tng(filename, force_overwrite=True)

	Save trajectory to Gromacs TNG format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filename, if its already there

	
save_gsd(filename, force_overwrite=True)

	Save trajectory to HOOMD GSD format

	Parameters:

	
	filename (path-like) – filesystem path in which to save the trajectory

	force_overwrite (bool, default=True) – Overwrite anything that exists at filenames, if its already there

	
center_coordinates(mass_weighted=False)

	Center each trajectory frame at the origin (0,0,0).

This method acts inplace on the trajectory. The centering can
be either uniformly weighted (mass_weighted=False) or weighted by
the mass of each atom (mass_weighted=True).

	Parameters:

	mass_weighted (bool, optional (default = False)) – If True, weight atoms by mass when removing COM.

	Return type:

	self

	
restrict_atoms(**kwargs)

	DEPRECATED: restrict_atoms was replaced by atom_slice and will be removed in 2.0

Retain only a subset of the atoms in a trajectory

Deletes atoms not in atom_indices, and re-indexes those that remain

	atom_indicesarray-like, dtype=int, shape=(n_atoms)
	List of atom indices to keep.

	inplacebool, default=True
	If True, the operation is done inplace, modifying self.
Otherwise, a copy is returned with the restricted atoms, and
self is not modified.

	trajmd.Trajectory
	The return value is either self, or the new trajectory,
depending on the value of inplace.

	
atom_slice(atom_indices, inplace=False)

	Create a new trajectory from a subset of atoms

	Parameters:

	
	atom_indices (array-like, dtype=int, shape=(n_atoms)) – List of indices of atoms to retain in the new trajectory.

	inplace (bool, default=False) – If True, the operation is done inplace, modifying self.
Otherwise, a copy is returned with the sliced atoms, and
self is not modified.

	Returns:

	traj – The return value is either self, or the new trajectory,
depending on the value of inplace.

	Return type:

	md.Trajectory

See also

	stack
	stack multiple trajectories along the atom axis

	
remove_solvent(exclude=None, inplace=False)

	Create a new trajectory without solvent atoms

	Parameters:

	
	exclude (array-like, dtype=str, shape=(n_solvent_types)) – List of solvent residue names to retain in the new trajectory.

	inplace (bool, default=False) – The return value is either self, or the new trajectory,
depending on the value of inplace.

	Returns:

	traj – The return value is either self, or the new trajectory,
depending on the value of inplace.

	Return type:

	md.Trajectory

	
smooth(width, order=3, atom_indices=None, inplace=False)

	Smoothen a trajectory using a zero-delay Buttersworth filter. Please
note that for optimal results the trajectory should be properly aligned
prior to smoothing (see md.Trajectory.superpose).

	Parameters:

	
	width (int) – This acts very similar to the window size in a moving average
smoother. In this implementation, the frequency of the low-pass
filter is taken to be two over this width, so it’s like
“half the period” of the sinusiod where the filter starts
to kick in. Must be an integer greater than one.

	order (int, optional, default=3) – The order of the filter. A small odd number is recommended. Higher
order filters cutoff more quickly, but have worse numerical
properties.

	atom_indices (array-like, dtype=int, shape=(n_atoms), default=None) – List of indices of atoms to retain in the new trajectory.
Default is set to None, which applies smoothing to all atoms.

	inplace (bool, default=False) – The return value is either self, or the new trajectory,
depending on the value of inplace.

	Returns:

	traj – The return value is either self, or the new smoothed trajectory,
depending on the value of inplace.

	Return type:

	md.Trajectory

References

[1]
“FiltFilt”. Scipy Cookbook. SciPy. <http://www.scipy.org/Cookbook/FiltFilt>.

	
make_molecules_whole(inplace=False, sorted_bonds=None)

	Only make molecules whole

	Parameters:

	
	inplace (bool) – If False, a new Trajectory is created and returned.
If True, this Trajectory is modified directly.

	sorted_bonds (array of shape (n_bonds, 2)) – Pairs of atom indices that define bonds, in sorted order.
If not specified, these will be determined from the trajectory’s
topology.

See also

image_molecules

	
image_molecules(inplace=False, anchor_molecules=None, other_molecules=None, sorted_bonds=None, make_whole=True)

	Recenter and apply periodic boundary conditions to the molecules in each frame of the trajectory.

This method is useful for visualizing a trajectory in which molecules were not wrapped
to the periodic unit cell, or in which the macromolecules are not centered with respect
to the solvent. It tries to be intelligent in deciding what molecules to center, so you
can simply call it and trust that it will “do the right thing”.

	Parameters:

	
	inplace (bool, default=False) – If False, a new Trajectory is created and returned. If True, this Trajectory
is modified directly.

	anchor_molecules (list of atom sets, optional, default=None) – Molecule that should be treated as an “anchor”.
These molecules will be centered in the box and put near each other.
If not specified, anchor molecules are guessed using a heuristic.

	other_molecules (list of atom sets, optional, default=None) – Molecules that are not anchors. If not specified,
these will be molecules other than the anchor molecules

	sorted_bonds (array of shape (n_bonds, 2)) – Pairs of atom indices that define bonds, in sorted order.
If not specified, these will be determined from the trajectory’s
topology. Only relevant if make_whole is True.

	make_whole (bool) – Whether to make molecules whole.

	Returns:

	traj – The return value is either self or the new trajectory,
depending on the value of inplace.

	Return type:

	md.Trajectory

See also

Topology.guess_anchor_molecules

	
westpa.core.h5io.join_traj(trajs, check_topology=True, discard_overlapping_frames=False)

	Concatenate multiple trajectories into one long trajectory

	Parameters:

	
	trajs (iterable of trajectories) – Combine these into one trajectory

	check_topology (bool) – Make sure topologies match before joining

	discard_overlapping_frames (bool) – Check for overlapping frames and discard

	
westpa.core.h5io.in_units_of(quantity, units_in, units_out, inplace=False)

	Convert a numerical quantity between unit systems.

	Parameters:

	
	quantity ({number, np.ndarray, openmm.unit.Quantity}) – quantity can either be a unitted quantity – i.e. instance of
openmm.unit.Quantity, or just a bare number or numpy array

	units_in (str) – If you supply a quantity that’s not a openmm.unit.Quantity, you should
tell me what units it is in. If you don’t, i’m just going to echo you
back your quantity without doing any unit checking.

	units_out (str) – A string description of the units you want out. This should look
like “nanometers/picosecond” or “nanometers**3” or whatever

	inplace (bool) – Attempt to do the transformation inplace, by mutating the quantity
argument and avoiding a copy. This is only possible if quantity is a
writable numpy array.

	Returns:

	rquantity – The resulting quantity, in the new unit system. If the function was
called with inplace=True and quantity was a writable numpy array,
rquantity will alias the same memory as the input quantity, which
will have been changed inplace. Otherwise, if a copy was required,
rquantity will point to new memory.

	Return type:

	{number, np.ndarray}

Examples

>>> in_units_of(1, 'meter**2/second', 'nanometers**2/picosecond')
1000000.0

	
westpa.core.h5io.import_(module)

	Import a module, and issue a nice message to stderr if the module isn’t installed.

Currently, this function will print nice error messages for networkx,
tables, netCDF4, and openmm.unit, which are optional MDTraj dependencies.

	Parameters:

	module (str) – The module you’d like to import, as a string

	Returns:

	module – The module object

	Return type:

	{module, object}

Examples

>>> # the following two lines are equivalent. the difference is that the
>>> # second will check for an ImportError and print you a very nice
>>> # user-facing message about what's wrong (where you can install the
>>> # module from, etc) if the import fails
>>> import tables
>>> tables = import_('tables')

	
westpa.core.h5io.ensure_type(val, dtype, ndim, name, length=None, can_be_none=False, shape=None, warn_on_cast=True, add_newaxis_on_deficient_ndim=False)

	Typecheck the size, shape and dtype of a numpy array, with optional
casting.

	Parameters:

	
	val ({np.ndaraay, None}) – The array to check

	dtype ({nd.dtype, str}) – The dtype you’d like the array to have

	ndim (int) – The number of dimensions you’d like the array to have

	name (str) – name of the array. This is used when throwing exceptions, so that
we can describe to the user which array is messed up.

	length (int, optional) – How long should the array be?

	can_be_none (bool) – Is val == None acceptable?

	shape (tuple, optional) – What should be shape of the array be? If the provided tuple has
Nones in it, those will be semantically interpreted as matching
any length in that dimension. So, for example, using the shape
spec (None, None, 3) will ensure that the last dimension is of
length three without constraining the first two dimensions

	warn_on_cast (bool, default=True) – Raise a warning when the dtypes don’t match and a cast is done.

	add_newaxis_on_deficient_ndim (bool, default=True) – Add a new axis to the beginining of the array if the number of
dimensions is deficient by one compared to your specification. For
instance, if you’re trying to get out an array of ndim == 3,
but the user provides an array of shape == (10, 10), a new axis will
be created with length 1 in front, so that the return value is of
shape (1, 10, 10).

Notes

The returned value will always be C-contiguous.

	Returns:

	typechecked_val – If val=None and can_be_none=True, then this will return None.
Otherwise, it will return val (or a copy of val). If the dtype wasn’t right,
it’ll be casted to the right shape. If the array was not C-contiguous, it’ll
be copied as well.

	Return type:

	np.ndarray, None

	
class westpa.core.h5io.HDF5TrajectoryFile(filename, mode='r', force_overwrite=True, compression='zlib')

	Bases: object

Interface for reading and writing to a MDTraj HDF5 molecular
dynamics trajectory file, whose format is described
here [https://github.com/rmcgibbo/mdtraj/issues/36].

This is a file-like object, that both reading or writing depending
on the mode flag. It implements the context manager protocol,
so you can also use it with the python ‘with’ statement.

The format is extremely flexible and high performance. It can hold a wide
variety of information about a trajectory, including fields like the
temperature and energies. Because it’s built on the fantastic HDF5 library,
it’s easily extensible too.

	Parameters:

	
	filename (path-like) – Path to the file to open

	mode ({'r, 'w'}) – Mode in which to open the file. ‘r’ is for reading and ‘w’ is for
writing

	force_overwrite (bool) – In mode=’w’, how do you want to behave if a file by the name of filename
already exists? if force_overwrite=True, it will be overwritten.

	compression ({'zlib', None}) – Apply compression to the file? This will save space, and does not
cost too many cpu cycles, so it’s recommended.

	
root

	

	
title

	

	
application

	

	
topology

	

	
randomState

	

	
forcefield

	

	
reference

	

	
constraints

	

See also

	mdtraj.load_hdf5
	High-level wrapper that returns a md.Trajectory

	
distance_unit = 'nanometers'

	

	
property root

	Direct access to the root group of the underlying Tables HDF5 file handle.

This can be used for random or specific access to the underlying arrays
on disk

	
property title

	User-defined title for the data represented in the file

	
property application

	Suite of programs that created the file

	
property topology

	Get the topology out from the file

	Returns:

	topology – A topology object

	Return type:

	mdtraj.Topology

	
property randomState

	State of the creators internal random number generator at the start of the simulation

	
property forcefield

	Description of the hamiltonian used. A short, human readable string, like AMBER99sbildn.

	
property reference

	A published reference that documents the program or parameters used to generate the data

	
property constraints

	Constraints applied to the bond lengths

	Returns:

	constraints – A one dimensional array with the a int, int, float type giving
the index of the two atoms involved in the constraints and the
distance of the constraint. If no constraint information
is in the file, the return value is None.

	Return type:

	{None, np.array, dtype=[(‘atom1’, ‘<i4’), (‘atom2’, ‘<i4’), (‘distance’, ‘<f4’)])}

	
read_as_traj(n_frames=None, stride=None, atom_indices=None)

	Read a trajectory from the HDF5 file

	Parameters:

	
	n_frames ({int, None}) – The number of frames to read. If not supplied, all of the
remaining frames will be read.

	stride ({int, None}) – By default all of the frames will be read, but you can pass this
flag to read a subset of of the data by grabbing only every
stride-th frame from disk.

	atom_indices ({int, None}) – By default all of the atom will be read, but you can pass this
flag to read only a subsets of the atoms for the coordinates and
velocities fields. Note that you will have to carefully manage
the indices and the offsets, since the i-th atom in the topology
will not necessarily correspond to the i-th atom in your subset.

	Returns:

	trajectory – A trajectory object containing the loaded portion of the file.

	Return type:

	Trajectory

	
read(n_frames=None, stride=None, atom_indices=None)

	Read one or more frames of data from the file

	Parameters:

	
	n_frames ({int, None}) – The number of frames to read. If not supplied, all of the
remaining frames will be read.

	stride ({int, None}) – By default all of the frames will be read, but you can pass this
flag to read a subset of of the data by grabbing only every
stride-th frame from disk.

	atom_indices ({int, None}) – By default all of the atom will be read, but you can pass this
flag to read only a subsets of the atoms for the coordinates and
velocities fields. Note that you will have to carefully manage
the indices and the offsets, since the i-th atom in the topology
will not necessarily correspond to the i-th atom in your subset.

Notes

If you’d like more flexible access to the data, that is available by
using the pytables group directly, which is accessible via the
root property on this class.

	Returns:

	frames – The returned namedtuple will have the fields “coordinates”, “time”, “cell_lengths”,
“cell_angles”, “velocities”, “kineticEnergy”, “potentialEnergy”,
“temperature” and “alchemicalLambda”. Each of the fields in the
returned namedtuple will either be a numpy array or None, dependening
on if that data was saved in the trajectory. All of the data shall be
n units of “nanometers”, “picoseconds”, “kelvin”, “degrees” and
“kilojoules_per_mole”.

	Return type:

	namedtuple

	
write(coordinates, time=None, cell_lengths=None, cell_angles=None, velocities=None, kineticEnergy=None, potentialEnergy=None, temperature=None, alchemicalLambda=None)

	Write one or more frames of data to the file

This method saves data that is associated with one or more simulation
frames. Note that all of the arguments can either be raw numpy arrays
or unitted arrays (with openmm.unit.Quantity). If the arrays are
unittted, a unit conversion will be automatically done from the
supplied units into the proper units for saving on disk. You won’t have
to worry about it.

Furthermore, if you wish to save a single frame of simulation data, you
can do so naturally, for instance by supplying a 2d array for the
coordinates and a single float for the time. This “shape deficiency”
will be recognized, and handled appropriately.

	Parameters:

	
	coordinates (np.ndarray, shape=(n_frames, n_atoms, 3)) – The cartesian coordinates of the atoms to write. By convention, the
lengths should be in units of nanometers.

	time (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the simulation time, in picoseconds
corresponding to each frame.

	cell_lengths (np.ndarray, shape=(n_frames, 3), dtype=float32, optional) – You may optionally specify the unitcell lengths.
The length of the periodic box in each frame, in each direction,
a, b, c. By convention the lengths should be in units
of angstroms.

	cell_angles (np.ndarray, shape=(n_frames, 3), dtype=float32, optional) – You may optionally specify the unitcell angles in each frame.
Organized analogously to cell_lengths. Gives the alpha, beta and
gamma angles respectively. By convention, the angles should be
in units of degrees.

	velocities (np.ndarray, shape=(n_frames, n_atoms, 3), optional) – You may optionally specify the cartesian components of the velocity
for each atom in each frame. By convention, the velocities
should be in units of nanometers / picosecond.

	kineticEnergy (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the kinetic energy in each frame. By
convention the kinetic energies should b in units of kilojoules per
mole.

	potentialEnergy (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the potential energy in each frame. By
convention the kinetic energies should b in units of kilojoules per
mole.

	temperature (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the temperature in each frame. By
convention the temperatures should b in units of Kelvin.

	alchemicalLambda (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the alchemical lambda in each frame. These
have no units, but are generally between zero and one.

	
seek(offset, whence=0)

	Move to a new file position

	Parameters:

	
	offset (int) – A number of frames.

	whence ({0, 1, 2}) – 0: offset from start of file, offset should be >=0.
1: move relative to the current position, positive or negative
2: move relative to the end of file, offset should be <= 0.
Seeking beyond the end of a file is not supported

	
tell()

	Current file position

	Returns:

	offset – The current frame in the file.

	Return type:

	int

	
close()

	Close the HDF5 file handle

	
flush()

	Write all buffered data in the to the disk file.

	
class westpa.core.h5io.Frames(coordinates, time, cell_lengths, cell_angles, velocities, kineticEnergy, potentialEnergy, temperature, alchemicalLambda)

	Bases: tuple

Create new instance of Frames(coordinates, time, cell_lengths, cell_angles, velocities, kineticEnergy, potentialEnergy, temperature, alchemicalLambda)

	
alchemicalLambda

	Alias for field number 8

	
cell_angles

	Alias for field number 3

	
cell_lengths

	Alias for field number 2

	
coordinates

	Alias for field number 0

	
kineticEnergy

	Alias for field number 5

	
potentialEnergy

	Alias for field number 6

	
temperature

	Alias for field number 7

	
time

	Alias for field number 1

	
velocities

	Alias for field number 4

	
class westpa.core.h5io.WESTTrajectory(coordinates, topology=None, time=None, iter_labels=None, seg_labels=None, pcoords=None, parent_ids=None, unitcell_lengths=None, unitcell_angles=None)

	Bases: Trajectory

A subclass of mdtraj.Trajectory that contains the trajectory of atom coordinates with
pointers denoting the iteration number and segment index of each frame.

	
iter_label_values()

	

	
seg_label_values(iteration=None)

	

	
property label_values

	

	
property iter_labels

	Iteration index corresponding to each frame

	Returns:

	time – The iteration index corresponding to each frame

	Return type:

	np.ndarray, shape=(n_frames,)

	
property seg_labels

	Segment index corresponding to each frame

	Returns:

	time – The segment index corresponding to each frame

	Return type:

	np.ndarray, shape=(n_frames,)

	
property pcoords

	

	
property parent_ids

	

	
join(other, check_topology=True, discard_overlapping_frames=False)

	Join two Trajectory``s. This overrides ``mdtraj.Trajectory.join
so that it also handles WESTPA pointers.
mdtraj.Trajectory.join’s documentation for more details.

	
slice(key, copy=True)

	Slice the Trajectory. This overrides mdtraj.Trajectory.slice
so that it also handles WESTPA pointers. Please see
mdtraj.Trajectory.slice’s documentation for more details.

	
westpa.core.h5io.resolve_filepath(path, constructor=<class 'h5py._hl.files.File'>, cargs=None, ckwargs=None, **addtlkwargs)

	Use a combined filesystem and HDF5 path to open an HDF5 file and return the
appropriate object. Returns (h5file, h5object). The file is opened using
constructor(filename, *cargs, **ckwargs).

	
westpa.core.h5io.calc_chunksize(shape, dtype, max_chunksize=262144)

	Calculate a chunk size for HDF5 data, anticipating that access will slice
along lower dimensions sooner than higher dimensions.

	
westpa.core.h5io.tostr(b)

	Convert a nonstandard string object b to str with the handling of the
case where b is bytes.

	
westpa.core.h5io.is_within_directory(directory, target)

	

	
westpa.core.h5io.safe_extract(tar, path='.', members=None, *, numeric_owner=False)

	

	
westpa.core.h5io.create_hdf5_group(parent_group, groupname, replace=False, creating_program=None)

	Create (or delete and recreate) and HDF5 group named groupname within
the enclosing Group (object) parent_group. If replace is True, then
the group is replaced if present; if False, then an error is raised if the
group is present. After the group is created, HDF5 attributes are set using
stamp_creator_data.

	
westpa.core.h5io.stamp_creator_data(h5group, creating_program=None)

	Mark the following on the HDF5 group h5group:

	creation_program:

	The name of the program that created the group

	creation_user:

	The username of the user who created the group

	creation_hostname:

	The hostname of the machine on which the group was created

	creation_time:

	The date and time at which the group was created, in the
current locale.

	creation_unix_time:

	The Unix time (seconds from the epoch, UTC) at which the
group was created.

This is meant to facilitate tracking the flow of data, but should not be considered
a secure paper trail (after all, anyone with write access to the HDF5 file can modify
these attributes).

	
westpa.core.h5io.get_creator_data(h5group)

	Read back creator data as written by stamp_creator_data, returning a dictionary with
keys as described for stamp_creator_data. Missing fields are denoted with None.
The creation_time field is returned as a string.

	
westpa.core.h5io.load_west(filename)

	Load WESTPA trajectory files from disk.

	Parameters:

	filename (str) – String filename of HDF Trajectory file.

	
westpa.core.h5io.stamp_iter_range(h5object, start_iter, stop_iter)

	Mark that the HDF5 object h5object (dataset or group) contains data from iterations
start_iter <= n_iter < stop_iter.

	
westpa.core.h5io.get_iter_range(h5object)

	Read back iteration range data written by stamp_iter_range

	
westpa.core.h5io.stamp_iter_step(h5group, iter_step)

	Mark that the HDF5 object h5object (dataset or group) contains data with an
iteration step (stride) of iter_step).

	
westpa.core.h5io.get_iter_step(h5group)

	Read back iteration step (stride) written by stamp_iter_step

	
westpa.core.h5io.check_iter_range_least(h5object, iter_start, iter_stop)

	Return True if the iteration range [iter_start, iter_stop) is
the same as or entirely contained within the iteration range stored
on h5object.

	
westpa.core.h5io.check_iter_range_equal(h5object, iter_start, iter_stop)

	Return True if the iteration range [iter_start, iter_stop) is
the same as the iteration range stored on h5object.

	
westpa.core.h5io.get_iteration_entry(h5object, n_iter)

	Create a slice for data corresponding to iteration n_iter in h5object.

	
westpa.core.h5io.get_iteration_slice(h5object, iter_start, iter_stop=None, iter_stride=None)

	Create a slice for data corresponding to iterations [iter_start,iter_stop),
with stride iter_step, in the given h5object.

	
westpa.core.h5io.label_axes(h5object, labels, units=None)

	Stamp the given HDF5 object with axis labels. This stores the axis labels
in an array of strings in an attribute called axis_labels on the given
object. units if provided is a corresponding list of units.

	
class westpa.core.h5io.WESTPAH5File(*args, **kwargs)

	Bases: File

Generalized input/output for WESTPA simulation (or analysis) data.

Create a new file object.

See the h5py user guide for a detailed explanation of the options.

	name
	Name of the file on disk, or file-like object. Note: for files
created with the ‘core’ driver, HDF5 still requires this be
non-empty.

	mode
	r Readonly, file must exist (default)
r+ Read/write, file must exist
w Create file, truncate if exists
w- or x Create file, fail if exists
a Read/write if exists, create otherwise

	driver
	Name of the driver to use. Legal values are None (default,
recommended), ‘core’, ‘sec2’, ‘direct’, ‘stdio’, ‘mpio’, ‘ros3’.

	libver
	Library version bounds. Supported values: ‘earliest’, ‘v108’,
‘v110’, ‘v112’ and ‘latest’. The ‘v108’, ‘v110’ and ‘v112’
options can only be specified with the HDF5 1.10.2 library or later.

	userblock_size
	Desired size of user block. Only allowed when creating a new
file (mode w, w- or x).

	swmr
	Open the file in SWMR read mode. Only used when mode = ‘r’.

	rdcc_nbytes
	Total size of the dataset chunk cache in bytes. The default size
is 1024**2 (1 MiB) per dataset. Applies to all datasets unless individually changed.

	rdcc_w0
	The chunk preemption policy for all datasets. This must be
between 0 and 1 inclusive and indicates the weighting according to
which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. A value of 0
means fully read or written chunks are treated no differently than
other chunks (the preemption is strictly LRU) while a value of 1
means fully read or written chunks are always preempted before
other chunks. If your application only reads or writes data once,
this can be safely set to 1. Otherwise, this should be set lower
depending on how often you re-read or re-write the same data. The
default value is 0.75. Applies to all datasets unless individually changed.

	rdcc_nslots
	The number of chunk slots in the raw data chunk cache for this
file. Increasing this value reduces the number of cache collisions,
but slightly increases the memory used. Due to the hashing
strategy, this value should ideally be a prime number. As a rule of
thumb, this value should be at least 10 times the number of chunks
that can fit in rdcc_nbytes bytes. For maximum performance, this
value should be set approximately 100 times that number of
chunks. The default value is 521. Applies to all datasets unless individually changed.

	track_order
	Track dataset/group/attribute creation order under root group
if True. If None use global default h5.get_config().track_order.

	fs_strategy
	The file space handling strategy to be used. Only allowed when
creating a new file (mode w, w- or x). Defined as:
“fsm” FSM, Aggregators, VFD
“page” Paged FSM, VFD
“aggregate” Aggregators, VFD
“none” VFD
If None use HDF5 defaults.

	fs_page_size
	File space page size in bytes. Only used when fs_strategy=”page”. If
None use the HDF5 default (4096 bytes).

	fs_persist
	A boolean value to indicate whether free space should be persistent
or not. Only allowed when creating a new file. The default value
is False.

	fs_threshold
	The smallest free-space section size that the free space manager
will track. Only allowed when creating a new file. The default
value is 1.

	page_buf_size
	Page buffer size in bytes. Only allowed for HDF5 files created with
fs_strategy=”page”. Must be a power of two value and greater or
equal than the file space page size when creating the file. It is
not used by default.

	min_meta_keep
	Minimum percentage of metadata to keep in the page buffer before
allowing pages containing metadata to be evicted. Applicable only if
page_buf_size is set. Default value is zero.

	min_raw_keep
	Minimum percentage of raw data to keep in the page buffer before
allowing pages containing raw data to be evicted. Applicable only if
page_buf_size is set. Default value is zero.

	locking
	The file locking behavior. Defined as:

	False (or “false”) – Disable file locking

	True (or “true”) – Enable file locking

	“best-effort” – Enable file locking but ignore some errors

	None – Use HDF5 defaults

Warning

The HDF5_USE_FILE_LOCKING environment variable can override
this parameter.

Only available with HDF5 >= 1.12.1 or 1.10.x >= 1.10.7.

	alignment_threshold
	Together with alignment_interval, this property ensures that
any file object greater than or equal in size to the alignment
threshold (in bytes) will be aligned on an address which is a
multiple of alignment interval.

	alignment_interval
	This property should be used in conjunction with
alignment_threshold. See the description above. For more
details, see
https://portal.hdfgroup.org/display/HDF5/H5P_SET_ALIGNMENT

	meta_block_size
	Set the current minimum size, in bytes, of new metadata block allocations.
See https://portal.hdfgroup.org/display/HDF5/H5P_SET_META_BLOCK_SIZE

	Additional keywords
	Passed on to the selected file driver.

	
default_iter_prec = 8

	

	
replace_dataset(*args, **kwargs)

	

	
iter_object_name(n_iter, prefix='', suffix='')

	Return a properly-formatted per-iteration name for iteration
n_iter. (This is used in create/require/get_iter_group, but may
also be useful for naming datasets on a per-iteration basis.)

	
create_iter_group(n_iter, group=None)

	Create a per-iteration data storage group for iteration number n_iter
in the group group (which is ‘/iterations’ by default).

	
require_iter_group(n_iter, group=None)

	Ensure that a per-iteration data storage group for iteration number n_iter
is available in the group group (which is ‘/iterations’ by default).

	
get_iter_group(n_iter, group=None)

	Get the per-iteration data group for iteration number n_iter from within
the group group (‘/iterations’ by default).

	
class westpa.core.h5io.WESTIterationFile(file, mode='r', force_overwrite=True, compression='zlib', link=None)

	Bases: HDF5TrajectoryFile

	
read(frame_indices=None, atom_indices=None)

	Read one or more frames of data from the file

	Parameters:

	
	n_frames ({int, None}) – The number of frames to read. If not supplied, all of the
remaining frames will be read.

	stride ({int, None}) – By default all of the frames will be read, but you can pass this
flag to read a subset of of the data by grabbing only every
stride-th frame from disk.

	atom_indices ({int, None}) – By default all of the atom will be read, but you can pass this
flag to read only a subsets of the atoms for the coordinates and
velocities fields. Note that you will have to carefully manage
the indices and the offsets, since the i-th atom in the topology
will not necessarily correspond to the i-th atom in your subset.

Notes

If you’d like more flexible access to the data, that is available by
using the pytables group directly, which is accessible via the
root property on this class.

	Returns:

	frames – The returned namedtuple will have the fields “coordinates”, “time”, “cell_lengths”,
“cell_angles”, “velocities”, “kineticEnergy”, “potentialEnergy”,
“temperature” and “alchemicalLambda”. Each of the fields in the
returned namedtuple will either be a numpy array or None, dependening
on if that data was saved in the trajectory. All of the data shall be
n units of “nanometers”, “picoseconds”, “kelvin”, “degrees” and
“kilojoules_per_mole”.

	Return type:

	namedtuple

	
has_topology()

	

	
has_pointer()

	

	
has_restart(segment)

	

	
write_data(where, name, data)

	

	
read_data(where, name)

	

	
read_as_traj(iteration=None, segment=None, atom_indices=None)

	Read a trajectory from the HDF5 file

	Parameters:

	
	n_frames ({int, None}) – The number of frames to read. If not supplied, all of the
remaining frames will be read.

	stride ({int, None}) – By default all of the frames will be read, but you can pass this
flag to read a subset of of the data by grabbing only every
stride-th frame from disk.

	atom_indices ({int, None}) – By default all of the atom will be read, but you can pass this
flag to read only a subsets of the atoms for the coordinates and
velocities fields. Note that you will have to carefully manage
the indices and the offsets, since the i-th atom in the topology
will not necessarily correspond to the i-th atom in your subset.

	Returns:

	trajectory – A trajectory object containing the loaded portion of the file.

	Return type:

	Trajectory

	
read_restart(segment)

	

	
write_segment(segment, pop=False)

	

	
class westpa.core.h5io.DSSpec

	Bases: object

Generalized WE dataset access

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
get_segment_data(n_iter, seg_id)

	

	
class westpa.core.h5io.FileLinkedDSSpec(h5file_or_name)

	Bases: DSSpec

Provide facilities for accessing WESTPA HDF5 files, including auto-opening and the ability
to pickle references to such files for transmission (through, e.g., the work manager), provided
that the HDF5 file can be accessed by the same path on both the sender and receiver.

	
property h5file

	Lazily open HDF5 file. This is required because allowing an open HDF5
file to cross a fork() boundary generally corrupts the internal state of
the HDF5 library.

	
class westpa.core.h5io.SingleDSSpec(h5file_or_name, dsname, alias=None, slice=None)

	Bases: FileLinkedDSSpec

	
classmethod from_string(dsspec_string, default_h5file)

	

	
class westpa.core.h5io.SingleIterDSSpec(h5file_or_name, dsname, alias=None, slice=None)

	Bases: SingleDSSpec

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
class westpa.core.h5io.SingleSegmentDSSpec(h5file_or_name, dsname, alias=None, slice=None)

	Bases: SingleDSSpec

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
get_segment_data(n_iter, seg_id)

	

	
class westpa.core.h5io.FnDSSpec(h5file_or_name, fn)

	Bases: FileLinkedDSSpec

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
class westpa.core.h5io.MultiDSSpec(dsspecs)

	Bases: DSSpec

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
class westpa.core.h5io.IterBlockedDataset(dataset_or_array, attrs=None)

	Bases: object

	
classmethod empty_like(blocked_dataset)

	

	
cache_data(max_size=None)

	Cache this dataset in RAM. If max_size is given, then only cache if the entire dataset
fits in max_size bytes. If max_size is the string ‘available’, then only cache if
the entire dataset fits in available RAM, as defined by the psutil module.

	
drop_cache()

	

	
iter_entry(n_iter)

	

	
iter_slice(start=None, stop=None)

	

westpa.core.progress module

	
westpa.core.progress.linregress(x, y=None, alternative='two-sided')

	Calculate a linear least-squares regression for two sets of measurements.

	Parameters:

	
	x (array_like) – Two sets of measurements. Both arrays should have the same length. If
only x is given (and y=None), then it must be a two-dimensional
array where one dimension has length 2. The two sets of measurements
are then found by splitting the array along the length-2 dimension. In
the case where y=None and x is a 2x2 array, linregress(x) is
equivalent to linregress(x[0], x[1]).

	y (array_like) – Two sets of measurements. Both arrays should have the same length. If
only x is given (and y=None), then it must be a two-dimensional
array where one dimension has length 2. The two sets of measurements
are then found by splitting the array along the length-2 dimension. In
the case where y=None and x is a 2x2 array, linregress(x) is
equivalent to linregress(x[0], x[1]).

	alternative ({'two-sided', 'less', 'greater'}, optional) – Defines the alternative hypothesis. Default is ‘two-sided’.
The following options are available:

	’two-sided’: the slope of the regression line is nonzero

	’less’: the slope of the regression line is less than zero

	’greater’: the slope of the regression line is greater than zero

Added in version 1.7.0.

	Returns:

	result – The return value is an object with the following attributes:

	slopefloat
	Slope of the regression line.

	interceptfloat
	Intercept of the regression line.

	rvaluefloat
	The Pearson correlation coefficient. The square of rvalue
is equal to the coefficient of determination.

	pvaluefloat
	The p-value for a hypothesis test whose null hypothesis is
that the slope is zero, using Wald Test with t-distribution of
the test statistic. See alternative above for alternative
hypotheses.

	stderrfloat
	Standard error of the estimated slope (gradient), under the
assumption of residual normality.

	intercept_stderrfloat
	Standard error of the estimated intercept, under the assumption
of residual normality.

	Return type:

	LinregressResult instance

See also

	scipy.optimize.curve_fit
	Use non-linear least squares to fit a function to data.

	scipy.optimize.leastsq
	Minimize the sum of squares of a set of equations.

Notes

Missing values are considered pair-wise: if a value is missing in x,
the corresponding value in y is masked.

For compatibility with older versions of SciPy, the return value acts
like a namedtuple of length 5, with fields slope, intercept,
rvalue, pvalue and stderr, so one can continue to write:

slope, intercept, r, p, se = linregress(x, y)

With that style, however, the standard error of the intercept is not
available. To have access to all the computed values, including the
standard error of the intercept, use the return value as an object
with attributes, e.g.:

result = linregress(x, y)
print(result.intercept, result.intercept_stderr)

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> rng = np.random.default_rng()

Generate some data:

>>> x = rng.random(10)
>>> y = 1.6*x + rng.random(10)

Perform the linear regression:

>>> res = stats.linregress(x, y)

Coefficient of determination (R-squared):

>>> print(f"R-squared: {res.rvalue**2:.6f}")
R-squared: 0.717533

Plot the data along with the fitted line:

>>> plt.plot(x, y, 'o', label='original data')
>>> plt.plot(x, res.intercept + res.slope*x, 'r', label='fitted line')
>>> plt.legend()
>>> plt.show()

Calculate 95% confidence interval on slope and intercept:

>>> # Two-sided inverse Students t-distribution
>>> # p - probability, df - degrees of freedom
>>> from scipy.stats import t
>>> tinv = lambda p, df: abs(t.ppf(p/2, df))

>>> ts = tinv(0.05, len(x)-2)
>>> print(f"slope (95%): {res.slope:.6f} +/- {ts*res.stderr:.6f}")
slope (95%): 1.453392 +/- 0.743465
>>> print(f"intercept (95%): {res.intercept:.6f}"
... f" +/- {ts*res.intercept_stderr:.6f}")
intercept (95%): 0.616950 +/- 0.544475

	
westpa.core.progress.nop()

	

	
class westpa.core.progress.ProgressIndicator(stream=None, interval=1)

	Bases: object

	
draw_fancy()

	

	
draw_simple()

	

	
draw()

	

	
clear()

	

	
property operation

	

	
property extent

	

	
property progress

	

	
new_operation(operation, extent=None, progress=0)

	

	
start()

	

	
stop()

	

westpa.core.segment module

	
class westpa.core.segment.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

westpa.core.sim_manager module

	
class westpa.core.sim_manager.timedelta

	Bases: object

Difference between two datetime values.

timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)

All arguments are optional and default to 0.
Arguments may be integers or floats, and may be positive or negative.

	
days

	Number of days.

	
max = datetime.timedelta(days=999999999, seconds=86399, microseconds=999999)

	

	
microseconds

	Number of microseconds (>= 0 and less than 1 second).

	
min = datetime.timedelta(days=-999999999)

	

	
resolution = datetime.timedelta(microseconds=1)

	

	
seconds

	Number of seconds (>= 0 and less than 1 day).

	
total_seconds()

	Total seconds in the duration.

	
class westpa.core.sim_manager.zip_longest

	Bases: object

zip_longest(iter1 [,iter2 […]], [fillvalue=None]) –> zip_longest object

Return a zip_longest object whose .__next__() method returns a tuple where
the i-th element comes from the i-th iterable argument. The .__next__()
method continues until the longest iterable in the argument sequence
is exhausted and then it raises StopIteration. When the shorter iterables
are exhausted, the fillvalue is substituted in their place. The fillvalue
defaults to None or can be specified by a keyword argument.

	
exception westpa.core.sim_manager.PickleError

	Bases: Exception

	
westpa.core.sim_manager.weight_dtype

	alias of float64

	
class westpa.core.sim_manager.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.core.sim_manager.InitialState(state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None, basis_auxref=None)

	Bases: object

Describes an initial state for a new trajectory. These are generally constructed by
appropriate modification of a basis state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	basis_state_id – Identifier of the basis state from which this state was
generated, or None.

	basis_state – The BasisState from which this state was generated, or None.

	iter_created – Iteration in which this state was generated (0 for
simulation initialization).

	iter_used – Iteration in which this state was used to initiate a
trajectory (None for unused).

	istate_type – Integer describing the type of this initial state
(ISTATE_TYPE_BASIS for direct use of a basis state,
ISTATE_TYPE_GENERATED for a state generated from a basis state,
ISTATE_TYPE_RESTART for a state corresponding to the endpoint
of a segment in another simulation, or
ISTATE_TYPE_START for a state generated from a start state).

	istate_status – Integer describing whether this initial state has been properly
prepared.

	pcoord – The representative progress coordinate of this state.

	
ISTATE_TYPE_UNSET = 0

	

	
ISTATE_TYPE_BASIS = 1

	

	
ISTATE_TYPE_GENERATED = 2

	

	
ISTATE_TYPE_RESTART = 3

	

	
ISTATE_TYPE_START = 4

	

	
ISTATE_UNUSED = 0

	

	
ISTATE_STATUS_PENDING = 0

	

	
ISTATE_STATUS_PREPARED = 1

	

	
ISTATE_STATUS_FAILED = 2

	

	
istate_types = {'ISTATE_TYPE_BASIS': 1, 'ISTATE_TYPE_GENERATED': 2, 'ISTATE_TYPE_RESTART': 3, 'ISTATE_TYPE_START': 4, 'ISTATE_TYPE_UNSET': 0}

	

	
istate_type_names = {0: 'ISTATE_TYPE_UNSET', 1: 'ISTATE_TYPE_BASIS', 2: 'ISTATE_TYPE_GENERATED', 3: 'ISTATE_TYPE_RESTART', 4: 'ISTATE_TYPE_START'}

	

	
istate_statuses = {'ISTATE_STATUS_FAILED': 2, 'ISTATE_STATUS_PENDING': 0, 'ISTATE_STATUS_PREPARED': 1}

	

	
istate_status_names = {0: 'ISTATE_STATUS_PENDING', 1: 'ISTATE_STATUS_PREPARED', 2: 'ISTATE_STATUS_FAILED'}

	

	
as_numpy_record()

	

	
westpa.core.sim_manager.grouper(n, iterable, fillvalue=None)

	Collect data into fixed-length chunks or blocks

	
exception westpa.core.sim_manager.PropagationError

	Bases: RuntimeError

	
class westpa.core.sim_manager.WESimManager(rc=None)

	Bases: object

	
process_config()

	

	
register_callback(hook, function, priority=0)

	Registers a callback to execute during the given hook into the simulation loop. The optional
priority is used to order when the function is called relative to other registered callbacks.

	
invoke_callbacks(hook, *args, **kwargs)

	

	
load_plugins(plugins=None)

	

	
report_bin_statistics(bins, target_states, save_summary=False)

	

	
get_bstate_pcoords(basis_states, label='basis')

	For each of the given basis_states, calculate progress coordinate values
as necessary. The HDF5 file is not updated.

	
report_basis_states(basis_states, label='basis')

	

	
report_target_states(target_states)

	

	
initialize_simulation(basis_states, target_states, start_states, segs_per_state=1, suppress_we=False)

	Initialize a new weighted ensemble simulation, taking segs_per_state initial
states from each of the given basis_states.

w_init is the forward-facing version of this function

	
prepare_iteration()

	

	
finalize_iteration()

	Clean up after an iteration and prepare for the next.

	
get_istate_futures()

	Add n_states initial states to the internal list of initial states assigned to
recycled particles. Spare states are used if available, otherwise new states are created.
If created new initial states requires generation, then a set of futures is returned
representing work manager tasks corresponding to the necessary generation work.

	
propagate()

	

	
save_bin_data()

	Calculate and write flux and transition count matrices to HDF5. Population and rate matrices
are likely useless at the single-tau level and are no longer written.

	
check_propagation()

	Check for failures in propagation or initial state generation, and raise an exception
if any are found.

	
run_we()

	Run the weighted ensemble algorithm based on the binning in self.final_bins and
the recycled particles in self.to_recycle, creating and committing the next iteration’s
segments to storage as well.

	
prepare_new_iteration()

	Commit data for the coming iteration to the HDF5 file.

	
run()

	

	
prepare_run()

	Prepare a new run.

	
finalize_run()

	Perform cleanup at the normal end of a run

	
pre_propagation()

	

	
post_propagation()

	

	
pre_we()

	

	
post_we()

	

westpa.core.states module

	
class westpa.core.states.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.core.states.BasisState(label, probability, pcoord=None, auxref=None, state_id=None)

	Bases: object

Describes an basis (micro)state. These basis states are used to generate
initial states for new trajectories, either at the beginning of the simulation
(i.e. at w_init) or due to recycling.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	probability – Probability of this state to be selected when creating a
new trajectory.

	pcoord – The representative progress coordinate of this state.

	auxref – A user-provided (string) reference for locating data associated
with this state (usually a filesystem path).

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile)

	Read a file defining basis states. Each line defines a state, and contains a label, the probability,
and optionally a data reference, separated by whitespace, as in:

unbound 1.0

or:

unbound_0 0.6 state0.pdb
unbound_1 0.4 state1.pdb

	
as_numpy_record()

	Return the data for this state as a numpy record array.

	
class westpa.core.states.InitialState(state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None, basis_auxref=None)

	Bases: object

Describes an initial state for a new trajectory. These are generally constructed by
appropriate modification of a basis state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	basis_state_id – Identifier of the basis state from which this state was
generated, or None.

	basis_state – The BasisState from which this state was generated, or None.

	iter_created – Iteration in which this state was generated (0 for
simulation initialization).

	iter_used – Iteration in which this state was used to initiate a
trajectory (None for unused).

	istate_type – Integer describing the type of this initial state
(ISTATE_TYPE_BASIS for direct use of a basis state,
ISTATE_TYPE_GENERATED for a state generated from a basis state,
ISTATE_TYPE_RESTART for a state corresponding to the endpoint
of a segment in another simulation, or
ISTATE_TYPE_START for a state generated from a start state).

	istate_status – Integer describing whether this initial state has been properly
prepared.

	pcoord – The representative progress coordinate of this state.

	
ISTATE_TYPE_UNSET = 0

	

	
ISTATE_TYPE_BASIS = 1

	

	
ISTATE_TYPE_GENERATED = 2

	

	
ISTATE_TYPE_RESTART = 3

	

	
ISTATE_TYPE_START = 4

	

	
ISTATE_UNUSED = 0

	

	
ISTATE_STATUS_PENDING = 0

	

	
ISTATE_STATUS_PREPARED = 1

	

	
ISTATE_STATUS_FAILED = 2

	

	
istate_types = {'ISTATE_TYPE_BASIS': 1, 'ISTATE_TYPE_GENERATED': 2, 'ISTATE_TYPE_RESTART': 3, 'ISTATE_TYPE_START': 4, 'ISTATE_TYPE_UNSET': 0}

	

	
istate_type_names = {0: 'ISTATE_TYPE_UNSET', 1: 'ISTATE_TYPE_BASIS', 2: 'ISTATE_TYPE_GENERATED', 3: 'ISTATE_TYPE_RESTART', 4: 'ISTATE_TYPE_START'}

	

	
istate_statuses = {'ISTATE_STATUS_FAILED': 2, 'ISTATE_STATUS_PENDING': 0, 'ISTATE_STATUS_PREPARED': 1}

	

	
istate_status_names = {0: 'ISTATE_STATUS_PENDING', 1: 'ISTATE_STATUS_PREPARED', 2: 'ISTATE_STATUS_FAILED'}

	

	
as_numpy_record()

	

	
class westpa.core.states.TargetState(label, pcoord, state_id=None)

	Bases: object

Describes a target state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	label – A descriptive label for this microstate (may be empty)

	pcoord – The representative progress coordinate of this state.

	
classmethod states_to_file(states, fileobj)

	Write a file defining basis states, which may then be read by states_from_file().

	
classmethod states_from_file(statefile, dtype)

	Read a file defining target states. Each line defines a state, and contains a label followed
by a representative progress coordinate value, separated by whitespace, as in:

bound 0.02

for a single target and one-dimensional progress coordinates or:

bound 2.7 0.0
drift 100 50.0

for two targets and a two-dimensional progress coordinate.

	
westpa.core.states.pare_basis_initial_states(basis_states, initial_states, segments=None)

	Given iterables of basis and initial states (and optionally segments that use them),
return minimal sets (as in __builtins__.set) of states needed to describe the history of the given
segments an initial states.

	
westpa.core.states.return_state_type(state_obj)

	Convinience function for returning the state ID and type of the state_obj pointer

westpa.core.systems module

	
class westpa.core.systems.NopMapper

	Bases: BinMapper

Put everything into one bin.

	
assign(coords, mask=None, output=None)

	

	
class westpa.core.systems.WESTSystem(rc=None)

	Bases: object

A description of the system being simulated, including the dimensionality and
data type of the progress coordinate, the number of progress coordinate entries
expected from each segment, and binning. To construct a simulation, the user must
subclass WESTSystem and set several instance variables.

At a minimum, the user must subclass WESTSystem and override
:method:`initialize` to set the data type and dimensionality of progress
coordinate data and define a bin mapper.

	Variables:

	
	pcoord_ndim – The number of dimensions in the progress coordinate.
Defaults to 1 (i.e. a one-dimensional progress
coordinate).

	pcoord_dtype – The data type of the progress coordinate, which must be
callable (e.g. np.float32 and long will work,
but '<f4' and '<i8' will not). Defaults to
np.float64.

	pcoord_len – The length of the progress coordinate time series
generated by each segment, including both the initial
and final values. Defaults to 2 (i.e. only the initial
and final progress coordinate values for a segment are
returned from propagation).

	bin_mapper – A bin mapper describing the progress coordinate space.

	bin_target_counts – A vector of target counts, one per bin.

	
property bin_target_counts

	

	
initialize()

	Prepare this system object for use in simulation or analysis,
creating a bin space, setting replicas per bin, and so on. This
function is called whenever a WEST tool creates an instance of the
system driver.

	
prepare_run()

	Prepare this system for use in a simulation run. Called by w_run in
all worker processes.

	
finalize_run()

	A hook for system-specific processing for the end of a simulation run
(as defined by such things as maximum wallclock time, rather than perhaps
more scientifically-significant definitions of “the end of a simulation run”)

	
new_pcoord_array(pcoord_len=None)

	Return an appropriately-sized and -typed pcoord array for a timepoint, segment,
or number of segments. If pcoord_len is not specified (or None), then
a length appropriate for a segment is returned.

	
new_region_set()

	

westpa.core.textio module

Miscellaneous routines to help with input and output of WEST-related data in text format

	
class westpa.core.textio.NumericTextOutputFormatter(output_file, mode='wt', emit_header=None)

	Bases: object

	
comment_string = '# '

	

	
emit_header = True

	

	
close()

	

	
write(str)

	

	
writelines(sequence)

	

	
write_comment(line)

	Writes a line beginning with the comment string

	
write_header(line)

	Appends a line to those written when the file header is written. The
appropriate comment string will be prepended, so line should not include
a comment character.

westpa.core.we_driver module

	
class westpa.core.we_driver.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.core.we_driver.InitialState(state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None, basis_auxref=None)

	Bases: object

Describes an initial state for a new trajectory. These are generally constructed by
appropriate modification of a basis state.

	Variables:

	
	state_id – Integer identifier of this state, usually set by the
data manager.

	basis_state_id – Identifier of the basis state from which this state was
generated, or None.

	basis_state – The BasisState from which this state was generated, or None.

	iter_created – Iteration in which this state was generated (0 for
simulation initialization).

	iter_used – Iteration in which this state was used to initiate a
trajectory (None for unused).

	istate_type – Integer describing the type of this initial state
(ISTATE_TYPE_BASIS for direct use of a basis state,
ISTATE_TYPE_GENERATED for a state generated from a basis state,
ISTATE_TYPE_RESTART for a state corresponding to the endpoint
of a segment in another simulation, or
ISTATE_TYPE_START for a state generated from a start state).

	istate_status – Integer describing whether this initial state has been properly
prepared.

	pcoord – The representative progress coordinate of this state.

	
ISTATE_TYPE_UNSET = 0

	

	
ISTATE_TYPE_BASIS = 1

	

	
ISTATE_TYPE_GENERATED = 2

	

	
ISTATE_TYPE_RESTART = 3

	

	
ISTATE_TYPE_START = 4

	

	
ISTATE_UNUSED = 0

	

	
ISTATE_STATUS_PENDING = 0

	

	
ISTATE_STATUS_PREPARED = 1

	

	
ISTATE_STATUS_FAILED = 2

	

	
istate_types = {'ISTATE_TYPE_BASIS': 1, 'ISTATE_TYPE_GENERATED': 2, 'ISTATE_TYPE_RESTART': 3, 'ISTATE_TYPE_START': 4, 'ISTATE_TYPE_UNSET': 0}

	

	
istate_type_names = {0: 'ISTATE_TYPE_UNSET', 1: 'ISTATE_TYPE_BASIS', 2: 'ISTATE_TYPE_GENERATED', 3: 'ISTATE_TYPE_RESTART', 4: 'ISTATE_TYPE_START'}

	

	
istate_statuses = {'ISTATE_STATUS_FAILED': 2, 'ISTATE_STATUS_PENDING': 0, 'ISTATE_STATUS_PREPARED': 1}

	

	
istate_status_names = {0: 'ISTATE_STATUS_PENDING', 1: 'ISTATE_STATUS_PREPARED', 2: 'ISTATE_STATUS_FAILED'}

	

	
as_numpy_record()

	

	
exception westpa.core.we_driver.ConsistencyError

	Bases: RuntimeError

	
exception westpa.core.we_driver.AccuracyError

	Bases: RuntimeError

	
class westpa.core.we_driver.NewWeightEntry(source_type, weight, prev_seg_id=None, prev_init_pcoord=None, prev_final_pcoord=None, new_init_pcoord=None, target_state_id=None, initial_state_id=None)

	Bases: object

	
NW_SOURCE_RECYCLED = 0

	

	
class westpa.core.we_driver.WEDriver(rc=None, system=None)

	Bases: object

A class implemented Huber & Kim’s weighted ensemble algorithm over Segment objects.
This class handles all binning, recycling, and preparation of new Segment objects for the
next iteration. Binning is accomplished using system.bin_mapper, and per-bin target counts
are from system.bin_target_counts.

The workflow is as follows:

	Call new_iteration() every new iteration, providing any recycling targets that are
in force and any available initial states for recycling.

	Call assign() to assign segments to bins based on their initial and end points. This
returns the number of walkers that were recycled.

	Call run_we(), optionally providing a set of initial states that will be used to
recycle walkers.

Note the presence of flux_matrix, transition_matrix,
current_iter_segments, next_iter_segments, recycling_segments,
initial_binning, final_binning, next_iter_binning, and new_weights (to be documented soon).

	
weight_split_threshold = 2.0

	

	
weight_merge_cutoff = 1.0

	

	
largest_allowed_weight = 1.0

	

	
smallest_allowed_weight = 1e-310

	

	
process_config()

	

	
property next_iter_segments

	Newly-created segments for the next iteration

	
property current_iter_segments

	Segments for the current iteration

	
property next_iter_assignments

	Bin assignments (indices) for initial points of next iteration.

	
property current_iter_assignments

	Bin assignments (indices) for endpoints of current iteration.

	
property recycling_segments

	Segments designated for recycling

	
property n_recycled_segs

	Number of segments recycled this iteration

	
property n_istates_needed

	Number of initial states needed to support recycling for this iteration

	
check_threshold_configs()

	Check to see if weight thresholds parameters are valid

	
clear()

	Explicitly delete all Segment-related state.

	
new_iteration(initial_states=None, target_states=None, new_weights=None, bin_mapper=None, bin_target_counts=None)

	Prepare for a new iteration. initial_states is a sequence of all InitialState objects valid
for use in to generating new segments for the next iteration (after the one being begun with the call to
new_iteration); that is, these are states available to recycle to. Target states which generate recycling events
are specified in target_states, a sequence of TargetState objects. Both initial_states
and target_states may be empty as required.

The optional new_weights is a sequence of NewWeightEntry objects which will
be used to construct the initial flux matrix.

The given bin_mapper will be used for assignment, and bin_target_counts used for splitting/merging
target counts; each will be obtained from the system object if omitted or None.

	
add_initial_states(initial_states)

	Add newly-prepared initial states to the pool available for recycling.

	
property all_initial_states

	Return an iterator over all initial states (available or used)

	
assign(segments, initializing=False)

	Assign segments to initial and final bins, and update the (internal) lists of used and available
initial states. If initializing is True, then the “final” bin assignments will
be identical to the initial bin assignments, a condition required for seeding a new iteration from
pre-existing segments.

	
populate_initial(initial_states, weights, system=None)

	Create walkers for a new weighted ensemble simulation.

One segment is created for each provided initial state, then binned and split/merged
as necessary. After this function is called, next_iter_segments will yield the new
segments to create, used_initial_states will contain data about which of the
provided initial states were used, and avail_initial_states will contain data about
which initial states were unused (because their corresponding walkers were merged
out of existence).

	
rebin_current(parent_segments)

	Reconstruct walkers for the current iteration based on (presumably) new binning.
The previous iteration’s segments must be provided (as parent_segments) in order
to update endpoint types appropriately.

	
construct_next()

	Construct walkers for the next iteration, by running weighted ensemble recycling
and bin/split/merge on the segments previously assigned to bins using assign.
Enough unused initial states must be present in self.avail_initial_states for every recycled
walker to be assigned an initial state.

After this function completes, self.flux_matrix contains a valid flux matrix for this
iteration (including any contributions from recycling from the previous iteration), and
self.next_iter_segments contains a list of segments ready for the next iteration,
with appropriate values set for weight, endpoint type, parent walkers, and so on.

westpa.core.wm_ops module

	
westpa.core.wm_ops.get_pcoord(state)

	

	
westpa.core.wm_ops.gen_istate(basis_state, initial_state)

	

	
westpa.core.wm_ops.prep_iter(n_iter, segments)

	

	
westpa.core.wm_ops.post_iter(n_iter, segments)

	

	
westpa.core.wm_ops.propagate(basis_states, initial_states, segments)

	

westpa.core.yamlcfg module

YAML-based configuration files for WESTPA

	
westpa.core.yamlcfg.YLoader

	alias of CLoader

	
class westpa.core.yamlcfg.NopMapper

	Bases: BinMapper

Put everything into one bin.

	
assign(coords, mask=None, output=None)

	

	
exception westpa.core.yamlcfg.ConfigValueWarning

	Bases: UserWarning

	
westpa.core.yamlcfg.warn_dubious_config_entry(entry, value, expected_type=None, category=<class 'westpa.core.yamlcfg.ConfigValueWarning'>, stacklevel=1)

	

	
westpa.core.yamlcfg.check_bool(value, action='warn')

	Check that the given value is boolean in type. If not, either
raise a warning (if action=='warn') or an exception (action=='raise').

	
exception westpa.core.yamlcfg.ConfigItemMissing(key, message=None)

	Bases: KeyError

	
exception westpa.core.yamlcfg.ConfigItemTypeError(key, expected_type, message=None)

	Bases: TypeError

	
exception westpa.core.yamlcfg.ConfigValueError(key, value, message=None)

	Bases: ValueError

	
class westpa.core.yamlcfg.YAMLConfig

	Bases: object

	
preload_config_files = ['/etc/westpa/westrc', '/home/docs/.westrc']

	

	
update_from_file(file, required=True)

	

	
require(key, type_=None)

	Ensure that a configuration item with the given key is present. If
the optional type_ is given, additionally require that the item has that
type.

	
require_type_if_present(key, type_)

	Ensure that the configuration item with the given key has the
given type.

	
coerce_type_if_present(key, type_)

	

	
get(key, default=None)

	

	
get_typed(key, type_, default=<object object>)

	

	
get_path(key, default=<object object>, expandvars=True, expanduser=True, realpath=True, abspath=True)

	

	
get_pathlist(key, default=<object object>, sep=':', expandvars=True, expanduser=True, realpath=True, abspath=True)

	

	
get_python_object(key, default=<object object>, path=None)

	

	
get_choice(key, choices, default=<object object>, value_transform=None)

	

	
class westpa.core.yamlcfg.YAMLSystem(rc=None)

	Bases: object

A description of the system being simulated, including the dimensionality and
data type of the progress coordinate, the number of progress coordinate entries
expected from each segment, and binning. To construct a simulation, the user must
subclass WESTSystem and set several instance variables.

At a minimum, the user must subclass WESTSystem and override
:method:`initialize` to set the data type and dimensionality of progress
coordinate data and define a bin mapper.

	Variables:

	
	pcoord_ndim – The number of dimensions in the progress coordinate.
Defaults to 1 (i.e. a one-dimensional progress
coordinate).

	pcoord_dtype – The data type of the progress coordinate, which must be
callable (e.g. np.float32 and long will work,
but '<f4' and '<i8' will not). Defaults to
np.float64.

	pcoord_len – The length of the progress coordinate time series
generated by each segment, including both the initial
and final values. Defaults to 2 (i.e. only the initial
and final progress coordinate values for a segment are
returned from propagation).

	bin_mapper – A bin mapper describing the progress coordinate space.

	bin_target_counts – A vector of target counts, one per bin.

	
property bin_target_counts

	

	
initialize()

	Prepare this system object for use in simulation or analysis,
creating a bin space, setting replicas per bin, and so on. This
function is called whenever a WEST tool creates an instance of the
system driver.

	
prepare_run()

	Prepare this system for use in a simulation run. Called by w_run in
all worker processes.

	
finalize_run()

	A hook for system-specific processing for the end of a simulation run
(as defined by such things as maximum wallclock time, rather than perhaps
more scientifically-significant definitions of “the end of a simulation run”)

	
new_pcoord_array(pcoord_len=None)

	Return an appropriately-sized and -typed pcoord array for a timepoint, segment,
or number of segments. If pcoord_len is not specified (or None), then
a length appropriate for a segment is returned.

	
new_region_set()

	

westpa.work_managers package

	Default Work Managers

	ZeroMQ

westpa.work_managers package

westpa.work_managers module

A system for parallel, remote execution of multiple arbitrary tasks.
Much of this, both in concept and execution, was inspired by (and in some
cases based heavily on) the concurrent.futures package from Python 3.2,
with some simplifications and adaptations (thanks to Brian Quinlan and his
futures implementation).

	
class westpa.work_managers.SerialWorkManager

	Bases: WorkManager

	
classmethod from_environ(wmenv=None)

	

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
class westpa.work_managers.ThreadsWorkManager(n_workers=None)

	Bases: WorkManager

A work manager using threads.

	
classmethod from_environ(wmenv=None)

	

	
runtask(task_queue)

	

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

	
class westpa.work_managers.ProcessWorkManager(n_workers=None, shutdown_timeout=1)

	Bases: WorkManager

A work manager using the multiprocessing module.

Notes

On MacOS, as of Python 3.8 the default start method for multiprocessing launching new processes was changed from fork to spawn.
In general, spawn is more robust and efficient, however it requires serializability of everything being passed to the child process.
In contrast, fork is much less memory efficient, as it makes a full copy of everything in the parent process.
However, it does not require picklability.

So, on MacOS, the method for launching new processes is explicitly changed to fork from the (MacOS-specific) default of spawn.
Unix should default to fork.

See https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods and
https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods for more details.

	
classmethod from_environ(wmenv=None)

	

	
task_loop()

	

	
results_loop()

	

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

	
westpa.work_managers.make_work_manager()

	Using cues from the environment, instantiate a pre-configured work manager.

westpa.work_managers.core module

	
class westpa.work_managers.core.islice

	Bases: object

islice(iterable, stop) –> islice object
islice(iterable, start, stop[, step]) –> islice object

Return an iterator whose next() method returns selected values from an
iterable. If start is specified, will skip all preceding elements;
otherwise, start defaults to zero. Step defaults to one. If
specified as another value, step determines how many values are
skipped between successive calls. Works like a slice() on a list
but returns an iterator.

	
westpa.work_managers.core.contextmanager(func)

	@contextmanager decorator.

Typical usage:

@contextmanager
def some_generator(<arguments>):

<setup>
try:

yield <value>

	finally:
	<cleanup>

This makes this:

	with some_generator(<arguments>) as <variable>:
	<body>

equivalent to this:

<setup>
try:

<variable> = <value>
<body>

	finally:
	<cleanup>

	
class westpa.work_managers.core.WorkManager

	Bases: object

Base class for all work managers. At a minimum, work managers must provide a
submit() function and a n_workers attribute (which may be a property),
though most will also override startup() and shutdown().

	
classmethod from_environ(wmenv=None)

	

	
classmethod add_wm_args(parser, wmenv=None)

	

	
sigint_handler(signum, frame)

	

	
install_sigint_handler()

	

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

	
run()

	Run the worker loop (in clients only).

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
submit_many(tasks)

	Submit a set of tasks to the work manager, returning a list of WMFuture objects representing
pending results. Each entry in tasks should be a triple (fn, args, kwargs), which will result in
fn(*args, **kwargs) being executed by a worker. The function fn and all arguments must be
picklable; note particularly that off-path modules are not picklable unless pre-loaded in the worker
process.

	
as_completed(futures)

	Return a generator which yields results from the given futures as they become
available.

	
submit_as_completed(task_generator, queue_size=None)

	Return a generator which yields results from a set of futures as they become
available. Futures are generated by the task_generator, which must return a triple of the form
expected by submit. The method also accepts an int queue_size that dictates the
maximum number of Futures that should be pending at any given time. The default value of
None submits all of the tasks at once.

	
wait_any(futures)

	Wait on any of the given futures and return the first one which has a result available.
If more than one result is or becomes available simultaneously, any completed future may be returned.

	
wait_all(futures)

	A convenience function which waits on all the given futures in order. This function returns
the same futures as submitted to the function as a list, indicating the order in which waits
occurred.

	
property is_master

	True if this is the master process for task distribution. This is necessary, e.g., for
MPI, where all processes start identically and then must branch depending on rank.

	
class westpa.work_managers.core.FutureWatcher(futures, threshold=1)

	Bases: object

A device to wait on multiple results and/or exceptions with only one lock.

	
signal(future)

	Signal this watcher that the given future has results available. If this
brings the number of available futures above signal_threshold, this watcher’s
event object will be signalled as well.

	
wait()

	Wait on one or more futures.

	
reset()

	Reset this watcher’s list of completed futures, returning the list of completed futures
prior to resetting it.

	
add(futures)

	Add watchers to all futures in the iterable of futures.

	
class westpa.work_managers.core.WMFuture(task_id=None)

	Bases: object

A “future”, representing work which has been dispatched for completion asynchronously.

	
static all_acquired(futures)

	Context manager to acquire all locks on the given futures. Primarily for internal use.

	
get_result(discard=True)

	Get the result associated with this future, blocking until it is available.
If discard is true, then removes the reference to the result contained
in this instance, so that a collection of futures need not turn into a cache of
all associated results.

	
property result

	

	
wait()

	Wait until this future has a result or exception available.

	
get_exception()

	Get the exception associated with this future, blocking until it is available.

	
property exception

	Get the exception associated with this future, blocking until it is available.

	
get_traceback()

	Get the traceback object associated with this future, if any.

	
property traceback

	Get the traceback object associated with this future, if any.

	
is_done()

	Indicates whether this future is done executing (may block if this future is being updated).

	
property done

	Indicates whether this future is done executing (may block if this future is being updated).

westpa.work_managers.environment module

Routines for configuring the work manager environment

	
class westpa.work_managers.environment.WMEnvironment(use_arg_prefixes=False, valid_work_managers=None)

	Bases: object

A class to encapsulate the environment in which work managers are instantiated;
this controls how environment variables and command-line arguments are used to
set up work managers. This could be used to cleanly instantiate two work managers
within one application, but is really more about providing facilities to make
it easier for individual work managers to configure themselves according to
precendence of configuration information:

	command-line arguments

	environment variables

	defaults

	
group_title = 'parallelization options'

	

	
group_description = None

	

	
env_prefix = 'WM'

	

	
arg_prefix = 'wm'

	

	
default_work_manager = 'serial'

	

	
default_parallel_work_manager = 'processes'

	

	
valid_work_managers = ['serial', 'threads', 'processes', 'zmq', 'mpi']

	

	
env_name(name)

	

	
arg_name(name)

	

	
arg_flag(name)

	

	
get_val(name, default=None, type_=None)

	

	
add_wm_args(parser)

	

	
process_wm_args(args)

	

	
make_work_manager()

	Using cues from the environment, instantiate a pre-configured work manager.

	
westpa.work_managers.environment.make_work_manager()

	Using cues from the environment, instantiate a pre-configured work manager.

	
westpa.work_managers.environment.add_wm_args(parser)

	

	
westpa.work_managers.environment.process_wm_args(args)

	

westpa.work_managers.mpi module

A work manager which uses MPI to distribute tasks and collect results.

	
class westpa.work_managers.mpi.deque

	Bases: object

deque([iterable[, maxlen]]) –> deque object

A list-like sequence optimized for data accesses near its endpoints.

	
append()

	Add an element to the right side of the deque.

	
appendleft()

	Add an element to the left side of the deque.

	
clear()

	Remove all elements from the deque.

	
copy()

	Return a shallow copy of a deque.

	
count()

	D.count(value) – return number of occurrences of value

	
extend()

	Extend the right side of the deque with elements from the iterable

	
extendleft()

	Extend the left side of the deque with elements from the iterable

	
index()

	D.index(value, [start, [stop]]) – return first index of value.
Raises ValueError if the value is not present.

	
insert()

	D.insert(index, object) – insert object before index

	
maxlen

	maximum size of a deque or None if unbounded

	
pop()

	Remove and return the rightmost element.

	
popleft()

	Remove and return the leftmost element.

	
remove()

	D.remove(value) – remove first occurrence of value.

	
reverse()

	D.reverse() – reverse IN PLACE

	
rotate()

	Rotate the deque n steps to the right (default n=1). If n is negative, rotates left.

	
class westpa.work_managers.mpi.WorkManager

	Bases: object

Base class for all work managers. At a minimum, work managers must provide a
submit() function and a n_workers attribute (which may be a property),
though most will also override startup() and shutdown().

	
classmethod from_environ(wmenv=None)

	

	
classmethod add_wm_args(parser, wmenv=None)

	

	
sigint_handler(signum, frame)

	

	
install_sigint_handler()

	

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

	
run()

	Run the worker loop (in clients only).

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
submit_many(tasks)

	Submit a set of tasks to the work manager, returning a list of WMFuture objects representing
pending results. Each entry in tasks should be a triple (fn, args, kwargs), which will result in
fn(*args, **kwargs) being executed by a worker. The function fn and all arguments must be
picklable; note particularly that off-path modules are not picklable unless pre-loaded in the worker
process.

	
as_completed(futures)

	Return a generator which yields results from the given futures as they become
available.

	
submit_as_completed(task_generator, queue_size=None)

	Return a generator which yields results from a set of futures as they become
available. Futures are generated by the task_generator, which must return a triple of the form
expected by submit. The method also accepts an int queue_size that dictates the
maximum number of Futures that should be pending at any given time. The default value of
None submits all of the tasks at once.

	
wait_any(futures)

	Wait on any of the given futures and return the first one which has a result available.
If more than one result is or becomes available simultaneously, any completed future may be returned.

	
wait_all(futures)

	A convenience function which waits on all the given futures in order. This function returns
the same futures as submitted to the function as a list, indicating the order in which waits
occurred.

	
property is_master

	True if this is the master process for task distribution. This is necessary, e.g., for
MPI, where all processes start identically and then must branch depending on rank.

	
class westpa.work_managers.mpi.WMFuture(task_id=None)

	Bases: object

A “future”, representing work which has been dispatched for completion asynchronously.

	
static all_acquired(futures)

	Context manager to acquire all locks on the given futures. Primarily for internal use.

	
get_result(discard=True)

	Get the result associated with this future, blocking until it is available.
If discard is true, then removes the reference to the result contained
in this instance, so that a collection of futures need not turn into a cache of
all associated results.

	
property result

	

	
wait()

	Wait until this future has a result or exception available.

	
get_exception()

	Get the exception associated with this future, blocking until it is available.

	
property exception

	Get the exception associated with this future, blocking until it is available.

	
get_traceback()

	Get the traceback object associated with this future, if any.

	
property traceback

	Get the traceback object associated with this future, if any.

	
is_done()

	Indicates whether this future is done executing (may block if this future is being updated).

	
property done

	Indicates whether this future is done executing (may block if this future is being updated).

	
class westpa.work_managers.mpi.Task(task_id, fn, args, kwargs)

	Bases: object

Tasks are tuples of (task_id, function, args, keyword args)

	
class westpa.work_managers.mpi.MPIWorkManager

	Bases: WorkManager

MPIWorkManager factory.

Initialize info shared by Manager and Worker classes.

	
classmethod from_environ(wmenv=None)

	

	
submit(fn, args=None, kwargs=None)

	Adhere to WorkManager interface. This method should never be
called.

	
class westpa.work_managers.mpi.Serial

	Bases: MPIWorkManager

Replication of the serial work manager. This is a fallback for MPI runs
that request only 1 (size=1) processor.

Initialize info shared by Manager and Worker classes.

	
submit(fn, args=None, kwargs=None)

	Adhere to WorkManager interface. This method should never be
called.

	
class westpa.work_managers.mpi.Manager

	Bases: MPIWorkManager

Manager of the MPIWorkManage. Distributes tasks to Worker as they are
received from the sim_manager. In addition to the main thread, this class
spawns two threads, a receiver and a dispatcher.

Initialize different state variables used by Manager.

	
startup()

	Spawns the dispatcher and receiver threads.

	
submit(fn, args=None, kwargs=None)

	Receive task from simulation manager and add it to pending_futures.

	
shutdown()

	Send shutdown tag to all worker processes, and set the shutdown
sentinel to stop the receiver and dispatcher loops.

	
class westpa.work_managers.mpi.Worker

	Bases: MPIWorkManager

Client class for executing tasks as distributed by the Manager in the
MPI Work Manager

Initialize info shared by Manager and Worker classes.

	
startup()

	Clock the worker in for work.

	
clockIn()

	Do each task as it comes in. The completion of a task is
notice to the manager that more work is welcome.

	
property is_master

	Worker processes need to be marked as not manager. This ensures that
the proper branching is followed in w_run.py.

westpa.work_managers.processes module

	
exception westpa.work_managers.processes.Empty

	Bases: Exception

Exception raised by Queue.get(block=0)/get_nowait().

	
class westpa.work_managers.processes.WorkManager

	Bases: object

Base class for all work managers. At a minimum, work managers must provide a
submit() function and a n_workers attribute (which may be a property),
though most will also override startup() and shutdown().

	
classmethod from_environ(wmenv=None)

	

	
classmethod add_wm_args(parser, wmenv=None)

	

	
sigint_handler(signum, frame)

	

	
install_sigint_handler()

	

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

	
run()

	Run the worker loop (in clients only).

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
submit_many(tasks)

	Submit a set of tasks to the work manager, returning a list of WMFuture objects representing
pending results. Each entry in tasks should be a triple (fn, args, kwargs), which will result in
fn(*args, **kwargs) being executed by a worker. The function fn and all arguments must be
picklable; note particularly that off-path modules are not picklable unless pre-loaded in the worker
process.

	
as_completed(futures)

	Return a generator which yields results from the given futures as they become
available.

	
submit_as_completed(task_generator, queue_size=None)

	Return a generator which yields results from a set of futures as they become
available. Futures are generated by the task_generator, which must return a triple of the form
expected by submit. The method also accepts an int queue_size that dictates the
maximum number of Futures that should be pending at any given time. The default value of
None submits all of the tasks at once.

	
wait_any(futures)

	Wait on any of the given futures and return the first one which has a result available.
If more than one result is or becomes available simultaneously, any completed future may be returned.

	
wait_all(futures)

	A convenience function which waits on all the given futures in order. This function returns
the same futures as submitted to the function as a list, indicating the order in which waits
occurred.

	
property is_master

	True if this is the master process for task distribution. This is necessary, e.g., for
MPI, where all processes start identically and then must branch depending on rank.

	
class westpa.work_managers.processes.WMFuture(task_id=None)

	Bases: object

A “future”, representing work which has been dispatched for completion asynchronously.

	
static all_acquired(futures)

	Context manager to acquire all locks on the given futures. Primarily for internal use.

	
get_result(discard=True)

	Get the result associated with this future, blocking until it is available.
If discard is true, then removes the reference to the result contained
in this instance, so that a collection of futures need not turn into a cache of
all associated results.

	
property result

	

	
wait()

	Wait until this future has a result or exception available.

	
get_exception()

	Get the exception associated with this future, blocking until it is available.

	
property exception

	Get the exception associated with this future, blocking until it is available.

	
get_traceback()

	Get the traceback object associated with this future, if any.

	
property traceback

	Get the traceback object associated with this future, if any.

	
is_done()

	Indicates whether this future is done executing (may block if this future is being updated).

	
property done

	Indicates whether this future is done executing (may block if this future is being updated).

	
class westpa.work_managers.processes.ProcessWorkManager(n_workers=None, shutdown_timeout=1)

	Bases: WorkManager

A work manager using the multiprocessing module.

Notes

On MacOS, as of Python 3.8 the default start method for multiprocessing launching new processes was changed from fork to spawn.
In general, spawn is more robust and efficient, however it requires serializability of everything being passed to the child process.
In contrast, fork is much less memory efficient, as it makes a full copy of everything in the parent process.
However, it does not require picklability.

So, on MacOS, the method for launching new processes is explicitly changed to fork from the (MacOS-specific) default of spawn.
Unix should default to fork.

See https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods and
https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods for more details.

	
classmethod from_environ(wmenv=None)

	

	
task_loop()

	

	
results_loop()

	

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

westpa.work_managers.serial module

	
class westpa.work_managers.serial.WorkManager

	Bases: object

Base class for all work managers. At a minimum, work managers must provide a
submit() function and a n_workers attribute (which may be a property),
though most will also override startup() and shutdown().

	
classmethod from_environ(wmenv=None)

	

	
classmethod add_wm_args(parser, wmenv=None)

	

	
sigint_handler(signum, frame)

	

	
install_sigint_handler()

	

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

	
run()

	Run the worker loop (in clients only).

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
submit_many(tasks)

	Submit a set of tasks to the work manager, returning a list of WMFuture objects representing
pending results. Each entry in tasks should be a triple (fn, args, kwargs), which will result in
fn(*args, **kwargs) being executed by a worker. The function fn and all arguments must be
picklable; note particularly that off-path modules are not picklable unless pre-loaded in the worker
process.

	
as_completed(futures)

	Return a generator which yields results from the given futures as they become
available.

	
submit_as_completed(task_generator, queue_size=None)

	Return a generator which yields results from a set of futures as they become
available. Futures are generated by the task_generator, which must return a triple of the form
expected by submit. The method also accepts an int queue_size that dictates the
maximum number of Futures that should be pending at any given time. The default value of
None submits all of the tasks at once.

	
wait_any(futures)

	Wait on any of the given futures and return the first one which has a result available.
If more than one result is or becomes available simultaneously, any completed future may be returned.

	
wait_all(futures)

	A convenience function which waits on all the given futures in order. This function returns
the same futures as submitted to the function as a list, indicating the order in which waits
occurred.

	
property is_master

	True if this is the master process for task distribution. This is necessary, e.g., for
MPI, where all processes start identically and then must branch depending on rank.

	
class westpa.work_managers.serial.WMFuture(task_id=None)

	Bases: object

A “future”, representing work which has been dispatched for completion asynchronously.

	
static all_acquired(futures)

	Context manager to acquire all locks on the given futures. Primarily for internal use.

	
get_result(discard=True)

	Get the result associated with this future, blocking until it is available.
If discard is true, then removes the reference to the result contained
in this instance, so that a collection of futures need not turn into a cache of
all associated results.

	
property result

	

	
wait()

	Wait until this future has a result or exception available.

	
get_exception()

	Get the exception associated with this future, blocking until it is available.

	
property exception

	Get the exception associated with this future, blocking until it is available.

	
get_traceback()

	Get the traceback object associated with this future, if any.

	
property traceback

	Get the traceback object associated with this future, if any.

	
is_done()

	Indicates whether this future is done executing (may block if this future is being updated).

	
property done

	Indicates whether this future is done executing (may block if this future is being updated).

	
class westpa.work_managers.serial.SerialWorkManager

	Bases: WorkManager

	
classmethod from_environ(wmenv=None)

	

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

westpa.work_managers.threads module

	
class westpa.work_managers.threads.WorkManager

	Bases: object

Base class for all work managers. At a minimum, work managers must provide a
submit() function and a n_workers attribute (which may be a property),
though most will also override startup() and shutdown().

	
classmethod from_environ(wmenv=None)

	

	
classmethod add_wm_args(parser, wmenv=None)

	

	
sigint_handler(signum, frame)

	

	
install_sigint_handler()

	

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

	
run()

	Run the worker loop (in clients only).

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
submit_many(tasks)

	Submit a set of tasks to the work manager, returning a list of WMFuture objects representing
pending results. Each entry in tasks should be a triple (fn, args, kwargs), which will result in
fn(*args, **kwargs) being executed by a worker. The function fn and all arguments must be
picklable; note particularly that off-path modules are not picklable unless pre-loaded in the worker
process.

	
as_completed(futures)

	Return a generator which yields results from the given futures as they become
available.

	
submit_as_completed(task_generator, queue_size=None)

	Return a generator which yields results from a set of futures as they become
available. Futures are generated by the task_generator, which must return a triple of the form
expected by submit. The method also accepts an int queue_size that dictates the
maximum number of Futures that should be pending at any given time. The default value of
None submits all of the tasks at once.

	
wait_any(futures)

	Wait on any of the given futures and return the first one which has a result available.
If more than one result is or becomes available simultaneously, any completed future may be returned.

	
wait_all(futures)

	A convenience function which waits on all the given futures in order. This function returns
the same futures as submitted to the function as a list, indicating the order in which waits
occurred.

	
property is_master

	True if this is the master process for task distribution. This is necessary, e.g., for
MPI, where all processes start identically and then must branch depending on rank.

	
class westpa.work_managers.threads.WMFuture(task_id=None)

	Bases: object

A “future”, representing work which has been dispatched for completion asynchronously.

	
static all_acquired(futures)

	Context manager to acquire all locks on the given futures. Primarily for internal use.

	
get_result(discard=True)

	Get the result associated with this future, blocking until it is available.
If discard is true, then removes the reference to the result contained
in this instance, so that a collection of futures need not turn into a cache of
all associated results.

	
property result

	

	
wait()

	Wait until this future has a result or exception available.

	
get_exception()

	Get the exception associated with this future, blocking until it is available.

	
property exception

	Get the exception associated with this future, blocking until it is available.

	
get_traceback()

	Get the traceback object associated with this future, if any.

	
property traceback

	Get the traceback object associated with this future, if any.

	
is_done()

	Indicates whether this future is done executing (may block if this future is being updated).

	
property done

	Indicates whether this future is done executing (may block if this future is being updated).

	
class westpa.work_managers.threads.Task(fn, args, kwargs, future)

	Bases: object

	
run()

	

	
class westpa.work_managers.threads.ThreadsWorkManager(n_workers=None)

	Bases: WorkManager

A work manager using threads.

	
classmethod from_environ(wmenv=None)

	

	
runtask(task_queue)

	

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

westpa.work_managers.zeromq package

westpa.work_managers.zeromq module

	
exception westpa.work_managers.zeromq.ZMQWMError

	Bases: RuntimeError

Base class for errors related to the ZeroMQ work manager itself

	
exception westpa.work_managers.zeromq.ZMQWMTimeout

	Bases: ZMQWMEnvironmentError

A timeout of a sort that indicatess that a master or worker has failed or never started.

	
exception westpa.work_managers.zeromq.ZMQWMEnvironmentError

	Bases: ZMQWMError

Class representing an error in the environment in which the ZeroMQ work manager is running.
This includes such things as master/worker ID mismatches.

	
exception westpa.work_managers.zeromq.ZMQWorkerMissing

	Bases: ZMQWMError

Exception representing that a worker processing a task died or disappeared

	
class westpa.work_managers.zeromq.ZMQCore

	Bases: object

	
PROTOCOL_MAJOR = 3

	

	
PROTOCOL_MINOR = 0

	

	
PROTOCOL_UPDATE = 0

	

	
PROTOCOL_VERSION = (3, 0, 0)

	

	
internal_transport = 'ipc'

	

	
default_comm_mode = 'ipc'

	

	
default_master_heartbeat = 20.0

	

	
default_worker_heartbeat = 20.0

	

	
default_timeout_factor = 5.0

	

	
default_startup_timeout = 120.0

	

	
default_shutdown_timeout = 5.0

	

	
classmethod make_ipc_endpoint()

	

	
classmethod remove_ipc_endpoints()

	

	
classmethod make_tcp_endpoint(address='127.0.0.1')

	

	
classmethod make_internal_endpoint()

	

	
get_identification()

	

	
validate_message(message)

	Validate incoming message. Raises an exception if the message is improperly formatted (TypeError)
or does not correspond to the appropriate master (ZMQWMEnvironmentError).

	
message_validation(msg)

	A context manager for message validation. The instance variable validation_fail_action
controls the behavior of this context manager:

	‘raise’: re-raise the exception that indicated failed validation. Useful for development.

	‘exit’ (default): report the error and exit the program.

	‘warn’: report the error and continue.

	
recv_message(socket, flags=0, validate=True, timeout=None)

	Receive a message object from the given socket, using the given flags.
Message validation is performed if validate is true.
If timeout is given, then it is the number of milliseconds to wait
prior to raising a ZMQWMTimeout exception. timeout is ignored if
flags includes zmq.NOBLOCK.

	
recv_all(socket, flags=0, validate=True)

	Receive all messages currently available from the given socket.

	
recv_ack(socket, flags=0, validate=True, timeout=None)

	

	
send_message(socket, message, payload=None, flags=0)

	Send a message object. Subclasses may override this to
decorate the message with appropriate IDs, then delegate upward to actually send
the message. message may either be a pre-constructed Message object or
a message identifier, in which (latter) case payload will become the message payload.
payload is ignored if message is a Message object.

	
send_reply(socket, original_message, reply='ok', payload=None, flags=0)

	Send a reply to original_message on socket. The reply message
is a Message object or a message identifier. The reply master_id and worker_id are
set from original_message, unless master_id is not set, in which case it is
set from self.master_id.

	
send_ack(socket, original_message)

	Send an acknowledgement message, which is mostly just to respect REQ/REP
recv/send patterns.

	
send_nak(socket, original_message)

	Send a negative acknowledgement message.

	
send_inproc_message(message, payload=None, flags=0)

	

	
signal_shutdown()

	

	
shutdown_handler(signal=None, frame=None)

	

	
install_signal_handlers(signals=None)

	

	
install_sigint_handler()

	

	
startup()

	

	
shutdown()

	

	
join()

	

	
class westpa.work_managers.zeromq.ZMQNode(upstream_rr_endpoint, upstream_ann_endpoint, n_local_workers=None)

	Bases: ZMQCore, IsNode

	
run()

	

	
property is_master

	

	
comm_loop()

	

	
startup()

	

	
class westpa.work_managers.zeromq.ZMQWorker(rr_endpoint, ann_endpoint)

	Bases: ZMQCore

This is the outward facing worker component of the ZMQ work manager. This
forms the interface to the master. This process cannot hang or crash due to an
error in tasks it executes, so tasks are isolated in ZMQExecutor, which
communicates with ZMQWorker via (what else?) ZeroMQ.

	
property is_master

	

	
update_master_info(msg)

	

	
identify(rr_socket)

	

	
request_task(rr_socket, task_socket)

	

	
handle_reconfigure_timeout(msg, timers)

	

	
handle_result(result_socket, rr_socket)

	

	
comm_loop()

	Master communication loop for the worker process.

	
shutdown_executor()

	

	
install_signal_handlers(signals=None)

	

	
startup(process_index=None)

	

	
class westpa.work_managers.zeromq.ZMQWorkManager(n_local_workers=1)

	Bases: ZMQCore, WorkManager, IsNode

	
classmethod add_wm_args(parser, wmenv=None)

	

	
classmethod from_environ(wmenv=None)

	

	
classmethod read_host_info(filename)

	

	
classmethod canonicalize_endpoint(endpoint, allow_wildcard_host=True)

	

	
property n_workers

	

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
submit_many(tasks)

	Submit a set of tasks to the work manager, returning a list of WMFuture objects representing
pending results. Each entry in tasks should be a triple (fn, args, kwargs), which will result in
fn(*args, **kwargs) being executed by a worker. The function fn and all arguments must be
picklable; note particularly that off-path modules are not picklable unless pre-loaded in the worker
process.

	
send_message(socket, message, payload=None, flags=0)

	Send a message object. Subclasses may override this to
decorate the message with appropriate IDs, then delegate upward to actually send
the message. message may either be a pre-constructed Message object or
a message identifier, in which (latter) case payload will become the message payload.
payload is ignored if message is a Message object.

	
handle_result(socket, msg)

	

	
handle_task_request(socket, msg)

	

	
update_worker_information(msg)

	

	
check_workers()

	

	
remove_worker(worker_id)

	

	
shutdown_clear_tasks()

	Abort pending tasks with error on shutdown.

	
comm_loop()

	

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

westpa.work_managers.zeromq.core module

Created on May 29, 2015

@author: mzwier

	
westpa.work_managers.zeromq.core.randport(address='127.0.0.1')

	Select a random unused TCP port number on the given address.

	
exception westpa.work_managers.zeromq.core.ZMQWMError

	Bases: RuntimeError

Base class for errors related to the ZeroMQ work manager itself

	
exception westpa.work_managers.zeromq.core.ZMQWorkerMissing

	Bases: ZMQWMError

Exception representing that a worker processing a task died or disappeared

	
exception westpa.work_managers.zeromq.core.ZMQWMEnvironmentError

	Bases: ZMQWMError

Class representing an error in the environment in which the ZeroMQ work manager is running.
This includes such things as master/worker ID mismatches.

	
exception westpa.work_managers.zeromq.core.ZMQWMTimeout

	Bases: ZMQWMEnvironmentError

A timeout of a sort that indicatess that a master or worker has failed or never started.

	
class westpa.work_managers.zeromq.core.Message(message=None, payload=None, master_id=None, src_id=None)

	Bases: object

	
SHUTDOWN = 'shutdown'

	

	
ACK = 'ok'

	

	
NAK = 'no'

	

	
IDENTIFY = 'identify'

	

	
TASKS_AVAILABLE = 'tasks_available'

	

	
TASK_REQUEST = 'task_request'

	

	
MASTER_BEACON = 'master_alive'

	

	
RECONFIGURE_TIMEOUT = 'reconfigure_timeout'

	

	
TASK = 'task'

	

	
RESULT = 'result'

	

	
idempotent_announcement_messages = {'master_alive', 'shutdown', 'tasks_available'}

	

	
classmethod coalesce_announcements(messages)

	

	
class westpa.work_managers.zeromq.core.Task(fn, args, kwargs, task_id=None)

	Bases: object

	
execute()

	Run this task, returning a Result object.

	
class westpa.work_managers.zeromq.core.Result(task_id, result=None, exception=None, traceback=None)

	Bases: object

	
class westpa.work_managers.zeromq.core.PassiveTimer(duration, started=None)

	Bases: object

	
started

	

	
duration

	

	
property expired

	

	
property expires_in

	

	
reset(at=None)

	

	
start(at=None)

	

	
class westpa.work_managers.zeromq.core.PassiveMultiTimer

	Bases: object

	
add_timer(identifier, duration)

	

	
remove_timer(identifier)

	

	
change_duration(identifier, duration)

	

	
reset(identifier=None, at=None)

	

	
expired(identifier, at=None)

	

	
next_expiration()

	

	
next_expiration_in()

	

	
which_expired(at=None)

	

	
class westpa.work_managers.zeromq.core.ZMQCore

	Bases: object

	
PROTOCOL_MAJOR = 3

	

	
PROTOCOL_MINOR = 0

	

	
PROTOCOL_UPDATE = 0

	

	
PROTOCOL_VERSION = (3, 0, 0)

	

	
internal_transport = 'ipc'

	

	
default_comm_mode = 'ipc'

	

	
default_master_heartbeat = 20.0

	

	
default_worker_heartbeat = 20.0

	

	
default_timeout_factor = 5.0

	

	
default_startup_timeout = 120.0

	

	
default_shutdown_timeout = 5.0

	

	
classmethod make_ipc_endpoint()

	

	
classmethod remove_ipc_endpoints()

	

	
classmethod make_tcp_endpoint(address='127.0.0.1')

	

	
classmethod make_internal_endpoint()

	

	
get_identification()

	

	
validate_message(message)

	Validate incoming message. Raises an exception if the message is improperly formatted (TypeError)
or does not correspond to the appropriate master (ZMQWMEnvironmentError).

	
message_validation(msg)

	A context manager for message validation. The instance variable validation_fail_action
controls the behavior of this context manager:

	‘raise’: re-raise the exception that indicated failed validation. Useful for development.

	‘exit’ (default): report the error and exit the program.

	‘warn’: report the error and continue.

	
recv_message(socket, flags=0, validate=True, timeout=None)

	Receive a message object from the given socket, using the given flags.
Message validation is performed if validate is true.
If timeout is given, then it is the number of milliseconds to wait
prior to raising a ZMQWMTimeout exception. timeout is ignored if
flags includes zmq.NOBLOCK.

	
recv_all(socket, flags=0, validate=True)

	Receive all messages currently available from the given socket.

	
recv_ack(socket, flags=0, validate=True, timeout=None)

	

	
send_message(socket, message, payload=None, flags=0)

	Send a message object. Subclasses may override this to
decorate the message with appropriate IDs, then delegate upward to actually send
the message. message may either be a pre-constructed Message object or
a message identifier, in which (latter) case payload will become the message payload.
payload is ignored if message is a Message object.

	
send_reply(socket, original_message, reply='ok', payload=None, flags=0)

	Send a reply to original_message on socket. The reply message
is a Message object or a message identifier. The reply master_id and worker_id are
set from original_message, unless master_id is not set, in which case it is
set from self.master_id.

	
send_ack(socket, original_message)

	Send an acknowledgement message, which is mostly just to respect REQ/REP
recv/send patterns.

	
send_nak(socket, original_message)

	Send a negative acknowledgement message.

	
send_inproc_message(message, payload=None, flags=0)

	

	
signal_shutdown()

	

	
shutdown_handler(signal=None, frame=None)

	

	
install_signal_handlers(signals=None)

	

	
install_sigint_handler()

	

	
startup()

	

	
shutdown()

	

	
join()

	

	
westpa.work_managers.zeromq.core.shutdown_process(process, timeout=1.0)

	

	
class westpa.work_managers.zeromq.core.IsNode(n_local_workers=None)

	Bases: object

	
write_host_info(filename=None)

	

	
startup()

	

	
shutdown()

	

westpa.work_managers.zeromq.node module

Created on Jun 11, 2015

@author: mzwier

	
class westpa.work_managers.zeromq.node.ZMQCore

	Bases: object

	
PROTOCOL_MAJOR = 3

	

	
PROTOCOL_MINOR = 0

	

	
PROTOCOL_UPDATE = 0

	

	
PROTOCOL_VERSION = (3, 0, 0)

	

	
internal_transport = 'ipc'

	

	
default_comm_mode = 'ipc'

	

	
default_master_heartbeat = 20.0

	

	
default_worker_heartbeat = 20.0

	

	
default_timeout_factor = 5.0

	

	
default_startup_timeout = 120.0

	

	
default_shutdown_timeout = 5.0

	

	
classmethod make_ipc_endpoint()

	

	
classmethod remove_ipc_endpoints()

	

	
classmethod make_tcp_endpoint(address='127.0.0.1')

	

	
classmethod make_internal_endpoint()

	

	
get_identification()

	

	
validate_message(message)

	Validate incoming message. Raises an exception if the message is improperly formatted (TypeError)
or does not correspond to the appropriate master (ZMQWMEnvironmentError).

	
message_validation(msg)

	A context manager for message validation. The instance variable validation_fail_action
controls the behavior of this context manager:

	‘raise’: re-raise the exception that indicated failed validation. Useful for development.

	‘exit’ (default): report the error and exit the program.

	‘warn’: report the error and continue.

	
recv_message(socket, flags=0, validate=True, timeout=None)

	Receive a message object from the given socket, using the given flags.
Message validation is performed if validate is true.
If timeout is given, then it is the number of milliseconds to wait
prior to raising a ZMQWMTimeout exception. timeout is ignored if
flags includes zmq.NOBLOCK.

	
recv_all(socket, flags=0, validate=True)

	Receive all messages currently available from the given socket.

	
recv_ack(socket, flags=0, validate=True, timeout=None)

	

	
send_message(socket, message, payload=None, flags=0)

	Send a message object. Subclasses may override this to
decorate the message with appropriate IDs, then delegate upward to actually send
the message. message may either be a pre-constructed Message object or
a message identifier, in which (latter) case payload will become the message payload.
payload is ignored if message is a Message object.

	
send_reply(socket, original_message, reply='ok', payload=None, flags=0)

	Send a reply to original_message on socket. The reply message
is a Message object or a message identifier. The reply master_id and worker_id are
set from original_message, unless master_id is not set, in which case it is
set from self.master_id.

	
send_ack(socket, original_message)

	Send an acknowledgement message, which is mostly just to respect REQ/REP
recv/send patterns.

	
send_nak(socket, original_message)

	Send a negative acknowledgement message.

	
send_inproc_message(message, payload=None, flags=0)

	

	
signal_shutdown()

	

	
shutdown_handler(signal=None, frame=None)

	

	
install_signal_handlers(signals=None)

	

	
install_sigint_handler()

	

	
startup()

	

	
shutdown()

	

	
join()

	

	
class westpa.work_managers.zeromq.node.Message(message=None, payload=None, master_id=None, src_id=None)

	Bases: object

	
SHUTDOWN = 'shutdown'

	

	
ACK = 'ok'

	

	
NAK = 'no'

	

	
IDENTIFY = 'identify'

	

	
TASKS_AVAILABLE = 'tasks_available'

	

	
TASK_REQUEST = 'task_request'

	

	
MASTER_BEACON = 'master_alive'

	

	
RECONFIGURE_TIMEOUT = 'reconfigure_timeout'

	

	
TASK = 'task'

	

	
RESULT = 'result'

	

	
idempotent_announcement_messages = {'master_alive', 'shutdown', 'tasks_available'}

	

	
classmethod coalesce_announcements(messages)

	

	
class westpa.work_managers.zeromq.node.PassiveMultiTimer

	Bases: object

	
add_timer(identifier, duration)

	

	
remove_timer(identifier)

	

	
change_duration(identifier, duration)

	

	
reset(identifier=None, at=None)

	

	
expired(identifier, at=None)

	

	
next_expiration()

	

	
next_expiration_in()

	

	
which_expired(at=None)

	

	
class westpa.work_managers.zeromq.node.IsNode(n_local_workers=None)

	Bases: object

	
write_host_info(filename=None)

	

	
startup()

	

	
shutdown()

	

	
class westpa.work_managers.zeromq.node.ThreadProxy(in_type, out_type, mon_type=SocketType.PUB)

	Bases: ProxyBase, ThreadDevice

Proxy in a Thread. See Proxy for more.

	
class westpa.work_managers.zeromq.node.ZMQNode(upstream_rr_endpoint, upstream_ann_endpoint, n_local_workers=None)

	Bases: ZMQCore, IsNode

	
run()

	

	
property is_master

	

	
comm_loop()

	

	
startup()

	

westpa.work_managers.zeromq.work_manager module

	
class westpa.work_managers.zeromq.work_manager.ZMQCore

	Bases: object

	
PROTOCOL_MAJOR = 3

	

	
PROTOCOL_MINOR = 0

	

	
PROTOCOL_UPDATE = 0

	

	
PROTOCOL_VERSION = (3, 0, 0)

	

	
internal_transport = 'ipc'

	

	
default_comm_mode = 'ipc'

	

	
default_master_heartbeat = 20.0

	

	
default_worker_heartbeat = 20.0

	

	
default_timeout_factor = 5.0

	

	
default_startup_timeout = 120.0

	

	
default_shutdown_timeout = 5.0

	

	
classmethod make_ipc_endpoint()

	

	
classmethod remove_ipc_endpoints()

	

	
classmethod make_tcp_endpoint(address='127.0.0.1')

	

	
classmethod make_internal_endpoint()

	

	
get_identification()

	

	
validate_message(message)

	Validate incoming message. Raises an exception if the message is improperly formatted (TypeError)
or does not correspond to the appropriate master (ZMQWMEnvironmentError).

	
message_validation(msg)

	A context manager for message validation. The instance variable validation_fail_action
controls the behavior of this context manager:

	‘raise’: re-raise the exception that indicated failed validation. Useful for development.

	‘exit’ (default): report the error and exit the program.

	‘warn’: report the error and continue.

	
recv_message(socket, flags=0, validate=True, timeout=None)

	Receive a message object from the given socket, using the given flags.
Message validation is performed if validate is true.
If timeout is given, then it is the number of milliseconds to wait
prior to raising a ZMQWMTimeout exception. timeout is ignored if
flags includes zmq.NOBLOCK.

	
recv_all(socket, flags=0, validate=True)

	Receive all messages currently available from the given socket.

	
recv_ack(socket, flags=0, validate=True, timeout=None)

	

	
send_message(socket, message, payload=None, flags=0)

	Send a message object. Subclasses may override this to
decorate the message with appropriate IDs, then delegate upward to actually send
the message. message may either be a pre-constructed Message object or
a message identifier, in which (latter) case payload will become the message payload.
payload is ignored if message is a Message object.

	
send_reply(socket, original_message, reply='ok', payload=None, flags=0)

	Send a reply to original_message on socket. The reply message
is a Message object or a message identifier. The reply master_id and worker_id are
set from original_message, unless master_id is not set, in which case it is
set from self.master_id.

	
send_ack(socket, original_message)

	Send an acknowledgement message, which is mostly just to respect REQ/REP
recv/send patterns.

	
send_nak(socket, original_message)

	Send a negative acknowledgement message.

	
send_inproc_message(message, payload=None, flags=0)

	

	
signal_shutdown()

	

	
shutdown_handler(signal=None, frame=None)

	

	
install_signal_handlers(signals=None)

	

	
install_sigint_handler()

	

	
startup()

	

	
shutdown()

	

	
join()

	

	
class westpa.work_managers.zeromq.work_manager.Message(message=None, payload=None, master_id=None, src_id=None)

	Bases: object

	
SHUTDOWN = 'shutdown'

	

	
ACK = 'ok'

	

	
NAK = 'no'

	

	
IDENTIFY = 'identify'

	

	
TASKS_AVAILABLE = 'tasks_available'

	

	
TASK_REQUEST = 'task_request'

	

	
MASTER_BEACON = 'master_alive'

	

	
RECONFIGURE_TIMEOUT = 'reconfigure_timeout'

	

	
TASK = 'task'

	

	
RESULT = 'result'

	

	
idempotent_announcement_messages = {'master_alive', 'shutdown', 'tasks_available'}

	

	
classmethod coalesce_announcements(messages)

	

	
class westpa.work_managers.zeromq.work_manager.Task(fn, args, kwargs, task_id=None)

	Bases: object

	
execute()

	Run this task, returning a Result object.

	
class westpa.work_managers.zeromq.work_manager.Result(task_id, result=None, exception=None, traceback=None)

	Bases: object

	
exception westpa.work_managers.zeromq.work_manager.ZMQWorkerMissing

	Bases: ZMQWMError

Exception representing that a worker processing a task died or disappeared

	
exception westpa.work_managers.zeromq.work_manager.ZMQWMEnvironmentError

	Bases: ZMQWMError

Class representing an error in the environment in which the ZeroMQ work manager is running.
This includes such things as master/worker ID mismatches.

	
class westpa.work_managers.zeromq.work_manager.IsNode(n_local_workers=None)

	Bases: object

	
write_host_info(filename=None)

	

	
startup()

	

	
shutdown()

	

	
class westpa.work_managers.zeromq.work_manager.PassiveMultiTimer

	Bases: object

	
add_timer(identifier, duration)

	

	
remove_timer(identifier)

	

	
change_duration(identifier, duration)

	

	
reset(identifier=None, at=None)

	

	
expired(identifier, at=None)

	

	
next_expiration()

	

	
next_expiration_in()

	

	
which_expired(at=None)

	

	
westpa.work_managers.zeromq.work_manager.randport(address='127.0.0.1')

	Select a random unused TCP port number on the given address.

	
class westpa.work_managers.zeromq.work_manager.ZMQWorker(rr_endpoint, ann_endpoint)

	Bases: ZMQCore

This is the outward facing worker component of the ZMQ work manager. This
forms the interface to the master. This process cannot hang or crash due to an
error in tasks it executes, so tasks are isolated in ZMQExecutor, which
communicates with ZMQWorker via (what else?) ZeroMQ.

	
property is_master

	

	
update_master_info(msg)

	

	
identify(rr_socket)

	

	
request_task(rr_socket, task_socket)

	

	
handle_reconfigure_timeout(msg, timers)

	

	
handle_result(result_socket, rr_socket)

	

	
comm_loop()

	Master communication loop for the worker process.

	
shutdown_executor()

	

	
install_signal_handlers(signals=None)

	

	
startup(process_index=None)

	

	
class westpa.work_managers.zeromq.work_manager.ZMQNode(upstream_rr_endpoint, upstream_ann_endpoint, n_local_workers=None)

	Bases: ZMQCore, IsNode

	
run()

	

	
property is_master

	

	
comm_loop()

	

	
startup()

	

	
class westpa.work_managers.zeromq.work_manager.WorkManager

	Bases: object

Base class for all work managers. At a minimum, work managers must provide a
submit() function and a n_workers attribute (which may be a property),
though most will also override startup() and shutdown().

	
classmethod from_environ(wmenv=None)

	

	
classmethod add_wm_args(parser, wmenv=None)

	

	
sigint_handler(signum, frame)

	

	
install_sigint_handler()

	

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

	
run()

	Run the worker loop (in clients only).

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
submit_many(tasks)

	Submit a set of tasks to the work manager, returning a list of WMFuture objects representing
pending results. Each entry in tasks should be a triple (fn, args, kwargs), which will result in
fn(*args, **kwargs) being executed by a worker. The function fn and all arguments must be
picklable; note particularly that off-path modules are not picklable unless pre-loaded in the worker
process.

	
as_completed(futures)

	Return a generator which yields results from the given futures as they become
available.

	
submit_as_completed(task_generator, queue_size=None)

	Return a generator which yields results from a set of futures as they become
available. Futures are generated by the task_generator, which must return a triple of the form
expected by submit. The method also accepts an int queue_size that dictates the
maximum number of Futures that should be pending at any given time. The default value of
None submits all of the tasks at once.

	
wait_any(futures)

	Wait on any of the given futures and return the first one which has a result available.
If more than one result is or becomes available simultaneously, any completed future may be returned.

	
wait_all(futures)

	A convenience function which waits on all the given futures in order. This function returns
the same futures as submitted to the function as a list, indicating the order in which waits
occurred.

	
property is_master

	True if this is the master process for task distribution. This is necessary, e.g., for
MPI, where all processes start identically and then must branch depending on rank.

	
class westpa.work_managers.zeromq.work_manager.WMFuture(task_id=None)

	Bases: object

A “future”, representing work which has been dispatched for completion asynchronously.

	
static all_acquired(futures)

	Context manager to acquire all locks on the given futures. Primarily for internal use.

	
get_result(discard=True)

	Get the result associated with this future, blocking until it is available.
If discard is true, then removes the reference to the result contained
in this instance, so that a collection of futures need not turn into a cache of
all associated results.

	
property result

	

	
wait()

	Wait until this future has a result or exception available.

	
get_exception()

	Get the exception associated with this future, blocking until it is available.

	
property exception

	Get the exception associated with this future, blocking until it is available.

	
get_traceback()

	Get the traceback object associated with this future, if any.

	
property traceback

	Get the traceback object associated with this future, if any.

	
is_done()

	Indicates whether this future is done executing (may block if this future is being updated).

	
property done

	Indicates whether this future is done executing (may block if this future is being updated).

	
class westpa.work_managers.zeromq.work_manager.deque

	Bases: object

deque([iterable[, maxlen]]) –> deque object

A list-like sequence optimized for data accesses near its endpoints.

	
append()

	Add an element to the right side of the deque.

	
appendleft()

	Add an element to the left side of the deque.

	
clear()

	Remove all elements from the deque.

	
copy()

	Return a shallow copy of a deque.

	
count()

	D.count(value) – return number of occurrences of value

	
extend()

	Extend the right side of the deque with elements from the iterable

	
extendleft()

	Extend the left side of the deque with elements from the iterable

	
index()

	D.index(value, [start, [stop]]) – return first index of value.
Raises ValueError if the value is not present.

	
insert()

	D.insert(index, object) – insert object before index

	
maxlen

	maximum size of a deque or None if unbounded

	
pop()

	Remove and return the rightmost element.

	
popleft()

	Remove and return the leftmost element.

	
remove()

	D.remove(value) – remove first occurrence of value.

	
reverse()

	D.reverse() – reverse IN PLACE

	
rotate()

	Rotate the deque n steps to the right (default n=1). If n is negative, rotates left.

	
class westpa.work_managers.zeromq.work_manager.ZMQWorkManager(n_local_workers=1)

	Bases: ZMQCore, WorkManager, IsNode

	
classmethod add_wm_args(parser, wmenv=None)

	

	
classmethod from_environ(wmenv=None)

	

	
classmethod read_host_info(filename)

	

	
classmethod canonicalize_endpoint(endpoint, allow_wildcard_host=True)

	

	
property n_workers

	

	
submit(fn, args=None, kwargs=None)

	Submit a task to the work manager, returning a WMFuture object representing the pending
result. fn(*args,**kwargs) will be executed by a worker, and the return value assigned as the
result of the returned future. The function fn and all arguments must be picklable; note
particularly that off-path modules (like the system module and any active plugins) are not
picklable unless pre-loaded in the worker process (i.e. prior to forking the master).

	
submit_many(tasks)

	Submit a set of tasks to the work manager, returning a list of WMFuture objects representing
pending results. Each entry in tasks should be a triple (fn, args, kwargs), which will result in
fn(*args, **kwargs) being executed by a worker. The function fn and all arguments must be
picklable; note particularly that off-path modules are not picklable unless pre-loaded in the worker
process.

	
send_message(socket, message, payload=None, flags=0)

	Send a message object. Subclasses may override this to
decorate the message with appropriate IDs, then delegate upward to actually send
the message. message may either be a pre-constructed Message object or
a message identifier, in which (latter) case payload will become the message payload.
payload is ignored if message is a Message object.

	
handle_result(socket, msg)

	

	
handle_task_request(socket, msg)

	

	
update_worker_information(msg)

	

	
check_workers()

	

	
remove_worker(worker_id)

	

	
shutdown_clear_tasks()

	Abort pending tasks with error on shutdown.

	
comm_loop()

	

	
startup()

	Perform any necessary startup work, such as spawning clients.

	
shutdown()

	Cleanly shut down any active workers.

westpa.work_managers.zeromq.worker module

Created on May 29, 2015

@author: mzwier

	
class westpa.work_managers.zeromq.worker.ZMQCore

	Bases: object

	
PROTOCOL_MAJOR = 3

	

	
PROTOCOL_MINOR = 0

	

	
PROTOCOL_UPDATE = 0

	

	
PROTOCOL_VERSION = (3, 0, 0)

	

	
internal_transport = 'ipc'

	

	
default_comm_mode = 'ipc'

	

	
default_master_heartbeat = 20.0

	

	
default_worker_heartbeat = 20.0

	

	
default_timeout_factor = 5.0

	

	
default_startup_timeout = 120.0

	

	
default_shutdown_timeout = 5.0

	

	
classmethod make_ipc_endpoint()

	

	
classmethod remove_ipc_endpoints()

	

	
classmethod make_tcp_endpoint(address='127.0.0.1')

	

	
classmethod make_internal_endpoint()

	

	
get_identification()

	

	
validate_message(message)

	Validate incoming message. Raises an exception if the message is improperly formatted (TypeError)
or does not correspond to the appropriate master (ZMQWMEnvironmentError).

	
message_validation(msg)

	A context manager for message validation. The instance variable validation_fail_action
controls the behavior of this context manager:

	‘raise’: re-raise the exception that indicated failed validation. Useful for development.

	‘exit’ (default): report the error and exit the program.

	‘warn’: report the error and continue.

	
recv_message(socket, flags=0, validate=True, timeout=None)

	Receive a message object from the given socket, using the given flags.
Message validation is performed if validate is true.
If timeout is given, then it is the number of milliseconds to wait
prior to raising a ZMQWMTimeout exception. timeout is ignored if
flags includes zmq.NOBLOCK.

	
recv_all(socket, flags=0, validate=True)

	Receive all messages currently available from the given socket.

	
recv_ack(socket, flags=0, validate=True, timeout=None)

	

	
send_message(socket, message, payload=None, flags=0)

	Send a message object. Subclasses may override this to
decorate the message with appropriate IDs, then delegate upward to actually send
the message. message may either be a pre-constructed Message object or
a message identifier, in which (latter) case payload will become the message payload.
payload is ignored if message is a Message object.

	
send_reply(socket, original_message, reply='ok', payload=None, flags=0)

	Send a reply to original_message on socket. The reply message
is a Message object or a message identifier. The reply master_id and worker_id are
set from original_message, unless master_id is not set, in which case it is
set from self.master_id.

	
send_ack(socket, original_message)

	Send an acknowledgement message, which is mostly just to respect REQ/REP
recv/send patterns.

	
send_nak(socket, original_message)

	Send a negative acknowledgement message.

	
send_inproc_message(message, payload=None, flags=0)

	

	
signal_shutdown()

	

	
shutdown_handler(signal=None, frame=None)

	

	
install_signal_handlers(signals=None)

	

	
install_sigint_handler()

	

	
startup()

	

	
shutdown()

	

	
join()

	

	
class westpa.work_managers.zeromq.worker.Message(message=None, payload=None, master_id=None, src_id=None)

	Bases: object

	
SHUTDOWN = 'shutdown'

	

	
ACK = 'ok'

	

	
NAK = 'no'

	

	
IDENTIFY = 'identify'

	

	
TASKS_AVAILABLE = 'tasks_available'

	

	
TASK_REQUEST = 'task_request'

	

	
MASTER_BEACON = 'master_alive'

	

	
RECONFIGURE_TIMEOUT = 'reconfigure_timeout'

	

	
TASK = 'task'

	

	
RESULT = 'result'

	

	
idempotent_announcement_messages = {'master_alive', 'shutdown', 'tasks_available'}

	

	
classmethod coalesce_announcements(messages)

	

	
exception westpa.work_managers.zeromq.worker.ZMQWMTimeout

	Bases: ZMQWMEnvironmentError

A timeout of a sort that indicatess that a master or worker has failed or never started.

	
class westpa.work_managers.zeromq.worker.PassiveMultiTimer

	Bases: object

	
add_timer(identifier, duration)

	

	
remove_timer(identifier)

	

	
change_duration(identifier, duration)

	

	
reset(identifier=None, at=None)

	

	
expired(identifier, at=None)

	

	
next_expiration()

	

	
next_expiration_in()

	

	
which_expired(at=None)

	

	
class westpa.work_managers.zeromq.worker.Task(fn, args, kwargs, task_id=None)

	Bases: object

	
execute()

	Run this task, returning a Result object.

	
class westpa.work_managers.zeromq.worker.Result(task_id, result=None, exception=None, traceback=None)

	Bases: object

	
class westpa.work_managers.zeromq.worker.ZMQWorker(rr_endpoint, ann_endpoint)

	Bases: ZMQCore

This is the outward facing worker component of the ZMQ work manager. This
forms the interface to the master. This process cannot hang or crash due to an
error in tasks it executes, so tasks are isolated in ZMQExecutor, which
communicates with ZMQWorker via (what else?) ZeroMQ.

	
property is_master

	

	
update_master_info(msg)

	

	
identify(rr_socket)

	

	
request_task(rr_socket, task_socket)

	

	
handle_reconfigure_timeout(msg, timers)

	

	
handle_result(result_socket, rr_socket)

	

	
comm_loop()

	Master communication loop for the worker process.

	
shutdown_executor()

	

	
install_signal_handlers(signals=None)

	

	
startup(process_index=None)

	

	
class westpa.work_managers.zeromq.worker.ZMQExecutor(task_endpoint, result_endpoint)

	Bases: ZMQCore

The is the component of the ZMQ WM worker that actually executes tasks.
This is isolated in a separate process and controlled via ZMQ from
the ZMQWorker.

	
comm_loop()

	

	
startup(process_index=None)

	

westpa.tools package

westpa.tools module

tools – classes for implementing command-line tools for WESTPA

	
class westpa.tools.WESTTool

	Bases: WESTToolComponent

Base class for WEST command line tools

	
prog = None

	

	
usage = None

	

	
description = None

	

	
epilog = None

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
make_parser(prog=None, usage=None, description=None, epilog=None, args=None)

	

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then call self.go()

	
class westpa.tools.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.tools.WESTToolComponent

	Bases: object

Base class for WEST command line tools and components used in constructing tools

	
include_arg(argname)

	

	
exclude_arg(argname)

	

	
set_arg_default(argname, value)

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
add_all_args(parser)

	Add arguments for all components from which this class derives to the given parser,
starting with the class highest up the inheritance chain (most distant ancestor).

	
process_all_args(args)

	

	
class westpa.tools.WESTSubcommand(parent)

	Bases: WESTToolComponent

Base class for command-line tool subcommands. A little sugar for making this
more uniform.

	
subcommand = None

	

	
help_text = None

	

	
description = None

	

	
add_to_subparsers(subparsers)

	

	
go()

	

	
property work_manager

	The work manager for this tool. Raises AttributeError if this is not a parallel
tool.

	
class westpa.tools.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
class westpa.tools.WESTMultiTool(wm_env=None)

	Bases: WESTParallelTool

Base class for command-line tools which work with multiple simulations. Automatically parses for
and gives commands to load multiple files.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
parse_from_yaml(yamlfilepath)

	Parse options from YAML input file. Command line arguments take
precedence over options specified in the YAML hierarchy.
TODO: add description on how YAML files should be constructed.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
exception NoSimulationsException

	Bases: Exception

	
generate_file_list(key_list)

	A convenience function which takes in a list of keys that are filenames, and returns a dictionary
which contains all the individual files loaded inside of a dictionary keyed to the filename.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.tools.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.tools.WESTDSSynthesizer(default_dsname=None, h5filename=None)

	Bases: WESTToolComponent

Tool for synthesizing a dataset for analysis from other datasets. This
may be done using a custom function, or a list of “data set specifications”.
It is anticipated that if several source datasets are required, then a tool
will have multiple instances of this class.

	
group_name = 'input dataset options'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.tools.WESTWDSSynthesizer(default_dsname=None, h5filename=None)

	Bases: WESTToolComponent

	
group_name = 'weight dataset options'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.tools.IterRangeSelection(data_manager=None)

	Bases: WESTToolComponent

Select and record limits on iterations used in analysis and/or reporting.
This class provides both the user-facing command-line options and parsing, and
the application-side API for recording limits in HDF5.

HDF5 datasets calculated based on a restricted set of iterations should be tagged
with the following attributes:

	first_iter
	The first iteration included in the calculation.

	last_iter
	One past the last iteration included in the calculation.

	iter_step
	Blocking or sampling period for iterations included in the calculation.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args, override_iter_start=None, override_iter_stop=None, default_iter_step=1)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
iter_block_iter()

	Return an iterable of (block_start,block_end) over the blocks of iterations
selected by –first-iter/–last-iter/–step-iter.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter)
selected by –first-iter/–last-iter/–step-iter.

	
record_data_iter_range(h5object, iter_start=None, iter_stop=None)

	Store attributes iter_start and iter_stop on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data at least for the iteration range specified.

	
check_data_iter_range_equal(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data exactly for the iteration range specified.

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride (in other words, the given iter_step is a multiple of the stride with
which data was recorded).

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, iter_start=None, iter_stop=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(iter_start=None, iter_stop=None, iter_step=None, dtype=None)

	Return a sequence for the given iteration numbers and stride, filling
in missing values from those stored on self. The smallest data type capable of
holding iter_stop is returned unless otherwise specified using the dtype
argument.

	
class westpa.tools.SegSelector

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
parse_segsel_file(filename)

	

	
class westpa.tools.BinMappingComponent

	Bases: WESTToolComponent

Component for obtaining a bin mapper from one of several places based on
command-line arguments. Such locations include an HDF5 file that contains
pickled mappers (including the primary WEST HDF5 file), the system object,
an external function, or (in the common case of rectilinear bins) a
list of lists of bin boundaries.

Some configuration is necessary prior to calling process_args() if loading a
mapper from HDF5. Specifically, either set_we_h5file_info() or
set_other_h5file_info() must be called to describe where to find the
appropriate mapper. In the case of set_we_h5file_info(), the mapper used for
WE at the end of a given iteration will be loaded. In the case of
set_other_h5file_info(), an arbitrary group and hash value are specified;
the mapper corresponding to that hash in the given group will be returned.

In the absence of arguments, the mapper contained in an existing HDF5 file
is preferred; if that is not available, the mapper from the system driver
is used.

This component adds the following arguments to argument parsers:

	--bins-from-system

	Obtain bins from the system driver

—bins-from-expr=EXPR
Construct rectilinear bins by parsing EXPR and calling
RectilinearBinMapper() with the result. EXPR must therefore be a list of
lists.

	–bins-from-function=[PATH:]MODULE.FUNC
	Call an external function FUNC in module MODULE (optionally adding PATH
to the search path when loading MODULE) which, when called, returns a
fully-constructed bin mapper.

—bins-from-file
Load bin definitions from a YAML configuration file.

	--bins-from-h5file

	Load bins from the file being considered; this is intended to mean the
master WEST HDF5 file or results of other binning calculations, as
appropriate.

	
add_args(parser, description='binning options', suppress=[])

	Add arguments specific to this component to the given argparse parser.

	
add_target_count_args(parser, description='bin target count options')

	Add options to the given parser corresponding to target counts.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
set_we_h5file_info(n_iter=None, data_manager=None, required=False)

	Set up to load a bin mapper from the master WEST HDF5 file. The mapper is actually loaded
from the file when self.load_bin_mapper() is called, if and only if command line arguments
direct this. If required is true, then a mapper must be available at iteration n_iter,
or else an exception will be raised.

	
set_other_h5file_info(topology_group, hashval)

	Set up to load a bin mapper from (any) open HDF5 file, where bin topologies are
stored in topology_group (an h5py Group object) and the desired mapper has hash
value hashval. The mapper itself is loaded when self.load_bin_mapper() is called.

	
westpa.tools.mapper_from_dict(ybins)

	

	
class westpa.tools.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.tools.Plotter(h5file, h5key, iteration=-1, interface='matplotlib')

	Bases: object

This is a semi-generic plotting interface that has a built in curses based terminal plotter.
It’s fairly specific to what we’re using it for here, but we could (and maybe should) build it out into
a little library that we can use via the command line to plot things. Might be useful for looking at data later.
That would also cut the size of this tool down by a good bit.

	
plot(i=0, j=1, tau=1, iteration=None, dim=0, interface=None)

	

	
class westpa.tools.WIPIDataset(raw, key)

	Bases: object

	
keys()

	

	
class westpa.tools.KineticsIteration(kin_h5file, index, assign, iteration=-1)

	Bases: object

	
keys()

	

	
class westpa.tools.WIPIScheme(scheme, name, parent, settings)

	Bases: object

	
property scheme

	

	
property list_schemes

	Lists what schemes are configured in west.cfg file.
Schemes should be structured as follows, in west.cfg:

	west:
	
	system:
	
	analysis:
	directory: analysis
analysis_schemes:

	scheme.1:
	enabled: True
states:

	label: unbound
coords: [[7.0]]

	label: bound
coords: [[2.7]]

	bins:
	
	type: RectilinearBinMapper
boundaries: [[0.0, 2.80, 7, 10000]]

	
property iteration

	

	
property assign

	

	
property direct

	The output from w_direct.py from the current scheme.

	
property state_labels

	

	
property bin_labels

	

	
property west

	

	
property reweight

	

	
property current

	The current iteration. See help for __get_data_for_iteration__

	
property past

	The previous iteration. See help for __get_data_for_iteration__

westpa.tools.binning module

	
class westpa.tools.binning.count(start=0, step=1)

	Bases: object

Return a count object whose .__next__() method returns consecutive values.

	Equivalent to:
	
	def count(firstval=0, step=1):
	x = firstval
while 1:

yield x
x += step

	
exception westpa.tools.binning.PickleError

	Bases: Exception

	
class westpa.tools.binning.RectilinearBinMapper(boundaries)

	Bases: BinMapper

Bin into a rectangular grid based on tuples of float values

	
property boundaries

	

	
assign(coords, mask=None, output=None)

	

	
westpa.tools.binning.weight_dtype

	alias of float64

	
westpa.tools.binning.get_object(object_name, path=None)

	Attempt to load the given object, using additional path information if given.

	
class westpa.tools.binning.WESTToolComponent

	Bases: object

Base class for WEST command line tools and components used in constructing tools

	
include_arg(argname)

	

	
exclude_arg(argname)

	

	
set_arg_default(argname, value)

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
add_all_args(parser)

	Add arguments for all components from which this class derives to the given parser,
starting with the class highest up the inheritance chain (most distant ancestor).

	
process_all_args(args)

	

	
westpa.tools.binning.mapper_from_expr(expr)

	

	
westpa.tools.binning.mapper_from_system()

	

	
westpa.tools.binning.mapper_from_function(funcspec)

	Return a mapper constructed by calling a function in a named module.
funcspec should be formatted as [PATH]:MODULE.FUNC. This function
loads MODULE, optionally adding PATH to the search path, then returns MODULE.FUNC()

	
westpa.tools.binning.mapper_from_hdf5(topol_group, hashval)

	Retrieve the mapper identified by hashval from the given bin topology group
topol_group. Returns (mapper, pickle, hashval)

	
westpa.tools.binning.mapper_from_yaml(yamlfilename)

	

	
westpa.tools.binning.mapper_from_dict(ybins)

	

	
westpa.tools.binning.write_bin_info(mapper, assignments, weights, n_target_states, outfile=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, detailed=False)

	Write information about binning to outfile, given a mapper (mapper) and the weights
(weights) and bin assignments (assignments) of a set of segments, along with a target state
count (n_target_states). If detailed is true, then per-bin information is written as well as
summary information about all bins.

	
westpa.tools.binning.write_bin_labels(mapper, dest, header='# bin labels:\n', fmt='# bin {index:{max_iwidth}d} -- {label!s}\n')

	Print labels for all bins in mapper to the file-like object``dest``.

If provided, header is printed prior to any labels. A number of expansions
are available in header:

	mapper – the mapper itself (from which most of the following can be obtained)

	classname – the class name of the mapper

	nbins – number of bins in the mapper

The fmt string specifies how bin labels are to be printed. A number of
expansions are available in fmt:

	index – the zero-based index of the bin

	label – the label of the bin

	max_iwidth – the maximum width (in characters) of the bin index, for pretty alignment

	
class westpa.tools.binning.BinMappingComponent

	Bases: WESTToolComponent

Component for obtaining a bin mapper from one of several places based on
command-line arguments. Such locations include an HDF5 file that contains
pickled mappers (including the primary WEST HDF5 file), the system object,
an external function, or (in the common case of rectilinear bins) a
list of lists of bin boundaries.

Some configuration is necessary prior to calling process_args() if loading a
mapper from HDF5. Specifically, either set_we_h5file_info() or
set_other_h5file_info() must be called to describe where to find the
appropriate mapper. In the case of set_we_h5file_info(), the mapper used for
WE at the end of a given iteration will be loaded. In the case of
set_other_h5file_info(), an arbitrary group and hash value are specified;
the mapper corresponding to that hash in the given group will be returned.

In the absence of arguments, the mapper contained in an existing HDF5 file
is preferred; if that is not available, the mapper from the system driver
is used.

This component adds the following arguments to argument parsers:

	--bins-from-system

	Obtain bins from the system driver

—bins-from-expr=EXPR
Construct rectilinear bins by parsing EXPR and calling
RectilinearBinMapper() with the result. EXPR must therefore be a list of
lists.

	–bins-from-function=[PATH:]MODULE.FUNC
	Call an external function FUNC in module MODULE (optionally adding PATH
to the search path when loading MODULE) which, when called, returns a
fully-constructed bin mapper.

—bins-from-file
Load bin definitions from a YAML configuration file.

	--bins-from-h5file

	Load bins from the file being considered; this is intended to mean the
master WEST HDF5 file or results of other binning calculations, as
appropriate.

	
add_args(parser, description='binning options', suppress=[])

	Add arguments specific to this component to the given argparse parser.

	
add_target_count_args(parser, description='bin target count options')

	Add options to the given parser corresponding to target counts.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
set_we_h5file_info(n_iter=None, data_manager=None, required=False)

	Set up to load a bin mapper from the master WEST HDF5 file. The mapper is actually loaded
from the file when self.load_bin_mapper() is called, if and only if command line arguments
direct this. If required is true, then a mapper must be available at iteration n_iter,
or else an exception will be raised.

	
set_other_h5file_info(topology_group, hashval)

	Set up to load a bin mapper from (any) open HDF5 file, where bin topologies are
stored in topology_group (an h5py Group object) and the desired mapper has hash
value hashval. The mapper itself is loaded when self.load_bin_mapper() is called.

westpa.tools.core module

Core classes for creating WESTPA command-line tools

	
class westpa.tools.core.WESTToolComponent

	Bases: object

Base class for WEST command line tools and components used in constructing tools

	
include_arg(argname)

	

	
exclude_arg(argname)

	

	
set_arg_default(argname, value)

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
add_all_args(parser)

	Add arguments for all components from which this class derives to the given parser,
starting with the class highest up the inheritance chain (most distant ancestor).

	
process_all_args(args)

	

	
class westpa.tools.core.WESTTool

	Bases: WESTToolComponent

Base class for WEST command line tools

	
prog = None

	

	
usage = None

	

	
description = None

	

	
epilog = None

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
make_parser(prog=None, usage=None, description=None, epilog=None, args=None)

	

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then call self.go()

	
class westpa.tools.core.WESTParallelTool(wm_env=None)

	Bases: WESTTool

Base class for command-line tools parallelized with wwmgr. This automatically adds and processes
wwmgr command-line arguments and creates a work manager at self.work_manager.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.tools.core.WESTMultiTool(wm_env=None)

	Bases: WESTParallelTool

Base class for command-line tools which work with multiple simulations. Automatically parses for
and gives commands to load multiple files.

	
make_parser_and_process(prog=None, usage=None, description=None, epilog=None, args=None)

	A convenience function to create a parser, call add_all_args(), and then call process_all_args().
The argument namespace is returned.

	
parse_from_yaml(yamlfilepath)

	Parse options from YAML input file. Command line arguments take
precedence over options specified in the YAML hierarchy.
TODO: add description on how YAML files should be constructed.

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
exception NoSimulationsException

	Bases: Exception

	
generate_file_list(key_list)

	A convenience function which takes in a list of keys that are filenames, and returns a dictionary
which contains all the individual files loaded inside of a dictionary keyed to the filename.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

	
main()

	A convenience function to make a parser, parse and process arguments, then run self.go() in the master process.

	
class westpa.tools.core.WESTSubcommand(parent)

	Bases: WESTToolComponent

Base class for command-line tool subcommands. A little sugar for making this
more uniform.

	
subcommand = None

	

	
help_text = None

	

	
description = None

	

	
add_to_subparsers(subparsers)

	

	
go()

	

	
property work_manager

	The work manager for this tool. Raises AttributeError if this is not a parallel
tool.

	
class westpa.tools.core.WESTMasterCommand

	Bases: WESTTool

Base class for command-line tools that employ subcommands

	
subparsers_title = None

	

	
subcommands = None

	

	
include_help_command = True

	

	
add_args(parser)

	Add arguments specific to this tool to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this tool and deal
with them appropriately (setting instance variables, etc)

	
go()

	Perform the analysis associated with this tool.

westpa.tools.data_reader module

	
class westpa.tools.data_reader.WESTToolComponent

	Bases: object

Base class for WEST command line tools and components used in constructing tools

	
include_arg(argname)

	

	
exclude_arg(argname)

	

	
set_arg_default(argname, value)

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
add_all_args(parser)

	Add arguments for all components from which this class derives to the given parser,
starting with the class highest up the inheritance chain (most distant ancestor).

	
process_all_args(args)

	

	
westpa.tools.data_reader.get_object(object_name, path=None)

	Attempt to load the given object, using additional path information if given.

	
class westpa.tools.data_reader.FnDSSpec(h5file_or_name, fn)

	Bases: FileLinkedDSSpec

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
class westpa.tools.data_reader.MultiDSSpec(dsspecs)

	Bases: DSSpec

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
class westpa.tools.data_reader.SingleSegmentDSSpec(h5file_or_name, dsname, alias=None, slice=None)

	Bases: SingleDSSpec

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
get_segment_data(n_iter, seg_id)

	

	
class westpa.tools.data_reader.SingleIterDSSpec(h5file_or_name, dsname, alias=None, slice=None)

	Bases: SingleDSSpec

	
get_iter_data(n_iter, seg_slice=(slice(None, None, None),))

	

	
class westpa.tools.data_reader.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.tools.data_reader.WESTDSSynthesizer(default_dsname=None, h5filename=None)

	Bases: WESTToolComponent

Tool for synthesizing a dataset for analysis from other datasets. This
may be done using a custom function, or a list of “data set specifications”.
It is anticipated that if several source datasets are required, then a tool
will have multiple instances of this class.

	
group_name = 'input dataset options'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.tools.data_reader.WESTWDSSynthesizer(default_dsname=None, h5filename=None)

	Bases: WESTToolComponent

	
group_name = 'weight dataset options'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

westpa.tools.dtypes module

Numpy/HDF5 data types shared among several WESTPA tools

	
westpa.tools.dtypes.n_iter_dtype

	alias of uint32

	
westpa.tools.dtypes.seg_id_dtype

	alias of int64

	
westpa.tools.dtypes.weight_dtype

	alias of float64

westpa.tools.iter_range module

	
class westpa.tools.iter_range.WESTToolComponent

	Bases: object

Base class for WEST command line tools and components used in constructing tools

	
include_arg(argname)

	

	
exclude_arg(argname)

	

	
set_arg_default(argname, value)

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
add_all_args(parser)

	Add arguments for all components from which this class derives to the given parser,
starting with the class highest up the inheritance chain (most distant ancestor).

	
process_all_args(args)

	

	
class westpa.tools.iter_range.IterRangeSelection(data_manager=None)

	Bases: WESTToolComponent

Select and record limits on iterations used in analysis and/or reporting.
This class provides both the user-facing command-line options and parsing, and
the application-side API for recording limits in HDF5.

HDF5 datasets calculated based on a restricted set of iterations should be tagged
with the following attributes:

	first_iter
	The first iteration included in the calculation.

	last_iter
	One past the last iteration included in the calculation.

	iter_step
	Blocking or sampling period for iterations included in the calculation.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args, override_iter_start=None, override_iter_stop=None, default_iter_step=1)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
iter_block_iter()

	Return an iterable of (block_start,block_end) over the blocks of iterations
selected by –first-iter/–last-iter/–step-iter.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter)
selected by –first-iter/–last-iter/–step-iter.

	
record_data_iter_range(h5object, iter_start=None, iter_stop=None)

	Store attributes iter_start and iter_stop on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data at least for the iteration range specified.

	
check_data_iter_range_equal(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data exactly for the iteration range specified.

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride (in other words, the given iter_step is a multiple of the stride with
which data was recorded).

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, iter_start=None, iter_stop=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(iter_start=None, iter_stop=None, iter_step=None, dtype=None)

	Return a sequence for the given iteration numbers and stride, filling
in missing values from those stored on self. The smallest data type capable of
holding iter_stop is returned unless otherwise specified using the dtype
argument.

westpa.tools.kinetics_tool module

	
class westpa.tools.kinetics_tool.WESTDataReader

	Bases: WESTToolComponent

Tool for reading data from WEST-related HDF5 files. Coordinates finding
the main HDF5 file from west.cfg or command line arguments, caching of certain
kinds of data (eventually), and retrieving auxiliary data sets from various
places.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
open(mode='r')

	

	
close()

	

	
property weight_dsspec

	

	
property parent_id_dsspec

	

	
class westpa.tools.kinetics_tool.IterRangeSelection(data_manager=None)

	Bases: WESTToolComponent

Select and record limits on iterations used in analysis and/or reporting.
This class provides both the user-facing command-line options and parsing, and
the application-side API for recording limits in HDF5.

HDF5 datasets calculated based on a restricted set of iterations should be tagged
with the following attributes:

	first_iter
	The first iteration included in the calculation.

	last_iter
	One past the last iteration included in the calculation.

	iter_step
	Blocking or sampling period for iterations included in the calculation.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args, override_iter_start=None, override_iter_stop=None, default_iter_step=1)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
iter_block_iter()

	Return an iterable of (block_start,block_end) over the blocks of iterations
selected by –first-iter/–last-iter/–step-iter.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter)
selected by –first-iter/–last-iter/–step-iter.

	
record_data_iter_range(h5object, iter_start=None, iter_stop=None)

	Store attributes iter_start and iter_stop on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data at least for the iteration range specified.

	
check_data_iter_range_equal(h5object, iter_start=None, iter_stop=None)

	Check that the given HDF5 object contains (as denoted by its iter_start/iter_stop attributes)
data exactly for the iteration range specified.

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride (in other words, the given iter_step is a multiple of the stride with
which data was recorded).

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, iter_start=None, iter_stop=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(iter_start=None, iter_stop=None, iter_step=None, dtype=None)

	Return a sequence for the given iteration numbers and stride, filling
in missing values from those stored on self. The smallest data type capable of
holding iter_stop is returned unless otherwise specified using the dtype
argument.

	
class westpa.tools.kinetics_tool.WESTSubcommand(parent)

	Bases: WESTToolComponent

Base class for command-line tool subcommands. A little sugar for making this
more uniform.

	
subcommand = None

	

	
help_text = None

	

	
description = None

	

	
add_to_subparsers(subparsers)

	

	
go()

	

	
property work_manager

	The work manager for this tool. Raises AttributeError if this is not a parallel
tool.

	
class westpa.tools.kinetics_tool.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
westpa.tools.kinetics_tool.generate_future(work_manager, name, eval_block, kwargs)

	

	
class westpa.tools.kinetics_tool.WESTKineticsBase(parent)

	Bases: WESTSubcommand

Common argument processing for w_direct/w_reweight subcommands.
Mostly limited to handling input and output from w_assign.

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
class westpa.tools.kinetics_tool.AverageCommands(parent)

	Bases: WESTKineticsBase

	
default_output_file = 'direct.h5'

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
stamp_mcbs_info(dataset)

	

	
open_files()

	

	
open_assignments()

	

	
print_averages(dataset, header, dim=1)

	

	
run_calculation(pi, nstates, start_iter, stop_iter, step_iter, dataset, eval_block, name, dim, do_averages=False, **extra)

	

westpa.tools.plot module

	
class westpa.tools.plot.Plotter(h5file, h5key, iteration=-1, interface='matplotlib')

	Bases: object

This is a semi-generic plotting interface that has a built in curses based terminal plotter.
It’s fairly specific to what we’re using it for here, but we could (and maybe should) build it out into
a little library that we can use via the command line to plot things. Might be useful for looking at data later.
That would also cut the size of this tool down by a good bit.

	
plot(i=0, j=1, tau=1, iteration=None, dim=0, interface=None)

	

westpa.tools.progress module

	
class westpa.tools.progress.ProgressIndicator(stream=None, interval=1)

	Bases: object

	
draw_fancy()

	

	
draw_simple()

	

	
draw()

	

	
clear()

	

	
property operation

	

	
property extent

	

	
property progress

	

	
new_operation(operation, extent=None, progress=0)

	

	
start()

	

	
stop()

	

	
class westpa.tools.progress.WESTToolComponent

	Bases: object

Base class for WEST command line tools and components used in constructing tools

	
include_arg(argname)

	

	
exclude_arg(argname)

	

	
set_arg_default(argname, value)

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
add_all_args(parser)

	Add arguments for all components from which this class derives to the given parser,
starting with the class highest up the inheritance chain (most distant ancestor).

	
process_all_args(args)

	

	
class westpa.tools.progress.ProgressIndicatorComponent

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

westpa.tools.selected_segs module

	
class westpa.tools.selected_segs.WESTToolComponent

	Bases: object

Base class for WEST command line tools and components used in constructing tools

	
include_arg(argname)

	

	
exclude_arg(argname)

	

	
set_arg_default(argname, value)

	

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
add_all_args(parser)

	Add arguments for all components from which this class derives to the given parser,
starting with the class highest up the inheritance chain (most distant ancestor).

	
process_all_args(args)

	

	
westpa.tools.selected_segs.seg_id_dtype

	alias of int64

	
class westpa.tools.selected_segs.SegmentSelection(iterable=None)

	Bases: object

Initialize this segment selection from an iterable of (n_iter,seg_id) pairs.

	
add(pair)

	

	
from_iter(n_iter)

	

	
property start_iter

	

	
property stop_iter

	

	
classmethod from_text(filename)

	

	
class westpa.tools.selected_segs.AllSegmentSelection(start_iter=None, stop_iter=None, data_manager=None)

	Bases: SegmentSelection

Initialize this segment selection from an iterable of (n_iter,seg_id) pairs.

	
add(pair)

	

	
from_iter(n_iter)

	

	
class westpa.tools.selected_segs.SegSelector

	Bases: WESTToolComponent

	
add_args(parser)

	Add arguments specific to this component to the given argparse parser.

	
process_args(args)

	Take argparse-processed arguments associated with this component and deal
with them appropriately (setting instance variables, etc)

	
parse_segsel_file(filename)

	

westpa.tools.wipi module

	
class westpa.tools.wipi.Plotter(h5file, h5key, iteration=-1, interface='matplotlib')

	Bases: object

This is a semi-generic plotting interface that has a built in curses based terminal plotter.
It’s fairly specific to what we’re using it for here, but we could (and maybe should) build it out into
a little library that we can use via the command line to plot things. Might be useful for looking at data later.
That would also cut the size of this tool down by a good bit.

	
plot(i=0, j=1, tau=1, iteration=None, dim=0, interface=None)

	

	
class westpa.tools.wipi.WIPIDataset(raw, key)

	Bases: object

	
keys()

	

	
class westpa.tools.wipi.KineticsIteration(kin_h5file, index, assign, iteration=-1)

	Bases: object

	
keys()

	

	
class westpa.tools.wipi.WIPIScheme(scheme, name, parent, settings)

	Bases: object

	
property scheme

	

	
property list_schemes

	Lists what schemes are configured in west.cfg file.
Schemes should be structured as follows, in west.cfg:

	west:
	
	system:
	
	analysis:
	directory: analysis
analysis_schemes:

	scheme.1:
	enabled: True
states:

	label: unbound
coords: [[7.0]]

	label: bound
coords: [[2.7]]

	bins:
	
	type: RectilinearBinMapper
boundaries: [[0.0, 2.80, 7, 10000]]

	
property iteration

	

	
property assign

	

	
property direct

	The output from w_direct.py from the current scheme.

	
property state_labels

	

	
property bin_labels

	

	
property west

	

	
property reweight

	

	
property current

	The current iteration. See help for __get_data_for_iteration__

	
property past

	The previous iteration. See help for __get_data_for_iteration__

Other Packages

	Fasthist
	Module contents

	Mclib
	Module contents

	Trajtree
	westpa.trajtree module

	westpa.trajtree.trajtree module

	Old Tools
	westpa.oldtools package

	westpa.oldtools.aframe package

	westpa.oldtools.cmds package

	westpa.oldtools.stats package

westpa.fasthist package

Module contents

	
westpa.fasthist.histnd(values, binbounds, weights=1.0, out=None, binbound_check=True, ignore_out_of_range=False)

	Generate an N-dimensional PDF (or contribution to a PDF) from the given values.
binbounds is a list of arrays of boundary values, with one entry for each
dimension (values must have as many columns as there are entries in binbounds)
weight, if provided, specifies the weight each value contributes to the
histogram; this may be a scalar (for equal weights for all values) or a vector of
the same length as values (for unequal weights). If binbound_check is True, then
the boundaries are checked for strict positive monotonicity; set to False to shave a few
microseconds if you know your bin boundaries to be monotonically increasing.

	
westpa.fasthist.normhistnd(hist, binbounds)

	Normalize the N-dimensional histogram hist with corresponding
bin boundaries binbounds. Modifies hist in place and returns
the normalization factor used.

westpa.mclib package

Module contents

A package for performing Monte Carlo bootstrap estimates of
statistics.

	
westpa.mclib.mcbs_correltime(dataset, alpha, n_sets=None)

	Calculate the correlation time of the given dataset, significant to the
(1-alpha) level, using the method described in Huber & Kim, “Weighted-ensemble
Brownian dynamics simulations for protein association reactions” (1996),
doi:10.1016/S0006-3495(96)79552-8. An appropriate balance between space and speed
is chosen based on the size of the input data.

Returns 0 for data statistically uncorrelated with (1-alpha) confidence, otherwise
the correlation length. (Thus, the appropriate stride for blocking is the
result of this function plus one.)

	
westpa.mclib.get_bssize(alpha)

	Return a bootstrap data set size appropriate for the given confidence level.

	
westpa.mclib.mcbs_ci(dataset, estimator, alpha, dlen, n_sets=None, args=None, kwargs=None, sort=<function msort>)

	Perform a Monte Carlo bootstrap estimate for the (1-alpha) confidence interval
on the given dataset with the given estimator. This routine is not appropriate
for time-correlated data.

Returns (estimate, ci_lb, ci_ub) where estimate is the application of the
given estimator to the input dataset, and ci_lb and ci_ub are the
lower and upper limits, respectively, of the (1-alpha) confidence interval on
estimate.

	estimator is called as estimator(dataset, *args, **kwargs). Common estimators include:
	
	numpy.mean – calculate the confidence interval on the mean of dataset

	numpy.median – calculate a confidence interval on the median of dataset

	numpy.std – calculate a confidence interval on the standard deviation of datset.

n_sets is the number of synthetic data sets to generate using the given estimator,
which will be chosen using `get_bssize()`_ if n_sets is not given.

sort can be used
to override the sorting routine used to calculate the confidence interval, which should
only be necessary for estimators returning vectors rather than scalars.

	
westpa.mclib.mcbs_ci_correl(estimator_datasets, estimator, alpha, n_sets=None, args=None, autocorrel_alpha=None, autocorrel_n_sets=None, subsample=None, do_correl=True, mcbs_enable=None, estimator_kwargs={})

	Perform a Monte Carlo bootstrap estimate for the (1-alpha) confidence interval
on the given dataset with the given estimator. This routine is appropriate
for time-correlated data, using the method described in Huber & Kim, “Weighted-ensemble
Brownian dynamics simulations for protein association reactions” (1996),
doi:10.1016/S0006-3495(96)79552-8 to determine a statistically-significant correlation time
and then reducing the dataset by a factor of that correlation time before running a “classic”
Monte Carlo bootstrap.

Returns (estimate, ci_lb, ci_ub, correl_time) where estimate is the application of the
given estimator to the input dataset, ci_lb and ci_ub are the
lower and upper limits, respectively, of the (1-alpha) confidence interval on
estimate, and correl_time is the correlation time of the dataset, significant to
(1-autocorrel_alpha).

	estimator is called as estimator(dataset, *args, **kwargs). Common estimators include:
	
	np.mean – calculate the confidence interval on the mean of dataset

	np.median – calculate a confidence interval on the median of dataset

	np.std – calculate a confidence interval on the standard deviation of datset.

n_sets is the number of synthetic data sets to generate using the given estimator,
which will be chosen using `get_bssize()`_ if n_sets is not given.

autocorrel_alpha (which defaults to alpha) can be used to adjust the significance
level of the autocorrelation calculation. Note that too high a significance level (too low an
alpha) for evaluating the significance of autocorrelation values can result in a failure to
detect correlation if the autocorrelation function is noisy.

The given subsample function is used, if provided, to subsample the dataset prior to running
the full Monte Carlo bootstrap. If none is provided, then a random entry from each correlated
block is used as the value for that block. Other reasonable choices include np.mean,
np.median, (lambda x: x[0]) or (lambda x: x[-1]). In particular, using
subsample=np.mean will converge to the block averaged mean and standard error,
while accounting for any non-normality in the distribution of the mean.

westpa.trajtree package

westpa.trajtree module

	
class westpa.trajtree.TrajTreeSet(segsel=None, data_manager=None)

	Bases: _trajtree_base

	
get_roots()

	

	
get_root_indices()

	

	
trace_trajectories(visit, get_visitor_state=None, set_visitor_state=None, vargs=None, vkwargs=None)

	

westpa.trajtree.trajtree module

	
class westpa.trajtree.trajtree.AllSegmentSelection(start_iter=None, stop_iter=None, data_manager=None)

	Bases: SegmentSelection

Initialize this segment selection from an iterable of (n_iter,seg_id) pairs.

	
add(pair)

	

	
from_iter(n_iter)

	

	
class westpa.trajtree.trajtree.trajnode(n_iter, seg_id)

	Bases: tuple

Create new instance of trajnode(n_iter, seg_id)

	
n_iter

	Alias for field number 0

	
seg_id

	Alias for field number 1

	
class westpa.trajtree.trajtree.TrajTreeSet(segsel=None, data_manager=None)

	Bases: _trajtree_base

	
get_roots()

	

	
get_root_indices()

	

	
trace_trajectories(visit, get_visitor_state=None, set_visitor_state=None, vargs=None, vkwargs=None)

	

	
class westpa.trajtree.trajtree.FakeTrajTreeSet

	Bases: TrajTreeSet

WESTPA Old Tools

	westpa.oldtools package
	westpa.oldtools module

	westpa.oldtools.files module

	westpa.oldtools.miscfn module

	westpa.oldtools.aframe package
	westpa.oldtools.aframe

	westpa.oldtools.aframe.atool module

	westpa.oldtools.aframe.base_mixin module

	westpa.oldtools.aframe.binning module

	westpa.oldtools.aframe.data_reader module

	westpa.oldtools.aframe.iter_range module

	westpa.oldtools.aframe.kinetics module

	westpa.oldtools.aframe.mcbs module

	westpa.oldtools.aframe.output module

	westpa.oldtools.aframe.plotting module

	westpa.oldtools.aframe.trajwalker module

	westpa.oldtools.aframe.transitions module

	westpa.oldtools.cmds package
	westpa.oldtools.cmds module

	westpa.oldtools.cmds.w_ttimes module

	westpa.oldtools.stats package
	westpa.oldtools.stats module

	westpa.oldtools.stats.accumulator module

	westpa.oldtools.stats.edfs module

	westpa.oldtools.stats.mcbs module

westpa.oldtools package

westpa.oldtools module

westpa.oldtools.files module

	
westpa.oldtools.files.load_npy_or_text(filename)

	Load an array from an existing .npy file, or read a text file and
convert to a NumPy array. In either case, return a NumPy array. If a
pickled NumPy dataset is found, memory-map it read-only. If the specified
file does not contain a pickled NumPy array, attempt to read the file using
numpy.loadtxt(filename, **kwargs).

westpa.oldtools.miscfn module

Miscellaneous support functions for WEST and WEST tools

	
westpa.oldtools.miscfn.parse_int_list(list_string)

	Parse a simple list consisting of integers or ranges of integers separated by commas. Ranges are specified
as min:max, and include the maximum value (unlike Python’s range). Duplicate values are ignored.
Returns the result as a sorted list. Raises ValueError if the list cannot be parsed.

westpa.oldtools.aframe package

westpa.oldtools.aframe

WEST Analyis framework – an unholy mess of classes exploiting each other

	
class westpa.oldtools.aframe.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
exception westpa.oldtools.aframe.ArgumentError(*args, **kwargs)

	Bases: RuntimeError

	
class westpa.oldtools.aframe.WESTAnalysisTool

	Bases: object

	
add_args(parser, upcall=True)

	Add arguments to a parser common to all analyses of this type.

	
process_args(args, upcall=True)

	

	
open_analysis_backing()

	

	
close_analysis_backing()

	

	
require_analysis_group(groupname, replace=False)

	

	
class westpa.oldtools.aframe.IterRangeMixin

	Bases: AnalysisMixin

A mixin for limiting the range of data considered for a given analysis. This should go after
DataManagerMixin

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
check_iter_range()

	

	
iter_block_iter()

	Return an iterable of (block_first,block_last+1) over the blocks of iterations
selected by –first/–last/–step. NOTE WELL that the second of the pair follows Python
iterator conventions and returns one past the last element of the block.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter) selected by –first/–last/–step.

	
record_data_iter_range(h5object, first_iter=None, last_iter=None)

	Store attributes first_iter and last_iter on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, first_iter=None, last_iter=None)

	Check that the given HDF5 object contains (as denoted by its first_iter/last_iter attributes) at least the
data range specified.

	
check_data_iter_range_equal(h5object, first_iter=None, last_iter=None)

	Check that the given HDF5 object contains per-iteration data for exactly the specified iterations (as denoted by the
object’s first_iter and last_iter attributes

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride. (In other words, is the given iter_step a multiple of the stride with
which data was recorded.)

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, first_iter=None, last_iter=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(first_iter=None, last_iter=None, iter_step=None)

	

	
class westpa.oldtools.aframe.WESTDataReaderMixin

	Bases: AnalysisMixin

A mixin for analysis requiring access to the HDF5 files generated during a WEST run.

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
clear_run_cache()

	

	
property cache_pcoords

	Whether or not to cache progress coordinate data. While caching this data
can significantly speed up some analysis operations, this requires
copious RAM.

Setting this to False when it was formerly True will release any cached data.

	
get_summary_table()

	

	
get_iter_group(n_iter)

	Return the HDF5 group corresponding to n_iter

	
get_segments(n_iter, include_pcoords=True)

	Return all segments present in iteration n_iter

	
get_segments_by_id(n_iter, seg_ids, include_pcoords=True)

	Get segments from the data manager, employing caching where possible

	
get_children(segment, include_pcoords=True)

	

	
get_seg_index(n_iter)

	

	
get_wtg_parent_array(n_iter)

	

	
get_parent_array(n_iter)

	

	
get_pcoord_array(n_iter)

	

	
get_pcoord_dataset(n_iter)

	

	
get_pcoords(n_iter, seg_ids)

	

	
get_seg_ids(n_iter, bool_array=None)

	

	
get_created_seg_ids(n_iter)

	Return a list of seg_ids corresponding to segments which were created for the given iteration (are not
continuations).

	
max_iter_segs_in_range(first_iter, last_iter)

	Return the maximum number of segments present in any iteration in the range selected

	
total_segs_in_range(first_iter, last_iter)

	Return the total number of segments present in all iterations in the range selected

	
get_pcoord_len(n_iter)

	Get the length of the progress coordinate array for the given iteration.

	
get_total_time(first_iter=None, last_iter=None, dt=None)

	Return the total amount of simulation time spanned between first_iter and last_iter (inclusive).

	
class westpa.oldtools.aframe.ExtDataReaderMixin

	Bases: AnalysisMixin

An external data reader, primarily designed for reading brute force data, but also suitable
for any auxiliary datasets required for analysis.

	
default_chunksize = 8192

	

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
is_npy(filename)

	

	
load_npy_or_text(filename)

	Load an array from an existing .npy file, or read a text file and
convert to a NumPy array. In either case, return a NumPy array. If a
pickled NumPy dataset is found, memory-map it read-only. If the specified
file does not contain a pickled NumPy array, attempt to read the file using
numpy.loadtxt(filename).

	
text_to_h5dataset(fileobj, group, dsname, dtype=<class 'numpy.float64'>, skiprows=0, usecols=None, chunksize=None)

	Read text-format data from the given filename or file-like object fileobj and write to a newly-created dataset
called dsname in the HDF5 group group. The data is stored as type dtype. By default, the shape is
taken as (number of lines, number of columns); columns can be omitted by specifying a list for usecols,
and lines can be skipped by using skiprows. Data is read in chunks of chunksize rows.

	
npy_to_h5dataset(array, group, dsname, usecols=None, chunksize=None)

	Store the given array into a newly-created dataset named dsname in the HDF5 group
group, optionally only storing a subset of columns. Data is written chunksize rows at a time,
allowing very large memory-mapped arrays to be copied.

	
class westpa.oldtools.aframe.BFDataManager

	Bases: AnalysisMixin

A class to manage brute force trajectory data. The primary purpose is to read in and
manage brute force progress coordinate data for one or more trajectories. The trajectories need not
be the same length, but they do need to have the same time spacing for progress coordinate values.

	
traj_index_dtype = dtype([('pcoord_len', '<u8'), ('source_data', 'O')])

	

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
update_traj_index(traj_id, pcoord_len, source_data)

	

	
get_traj_group(traj_id)

	

	
create_traj_group()

	

	
get_n_trajs()

	

	
get_traj_len(traj_id)

	

	
get_max_traj_len()

	

	
get_pcoord_array(traj_id)

	

	
get_pcoord_dataset(traj_id)

	

	
require_bf_h5file()

	

	
close_bf_h5file()

	

	
class westpa.oldtools.aframe.BinningMixin

	Bases: AnalysisMixin

A mixin for performing binning on WEST data.

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
mapper_from_expr(expr)

	

	
write_bin_labels(dest, header='# bin labels:\n', format='# bin {bin_index:{max_iwidth}d} -- {label!s}\n')

	Print labels for all bins in self.mapper to dest. If provided, header
is printed before any labels. The format string specifies how bin labels are to be printed. Valid entries are:

	bin_index – the zero-based index of the bin

	label – the label, as obtained by bin.label

	max_iwidth – the maximum width (in characters) of the bin index, for pretty alignment

	
require_binning_group()

	

	
delete_binning_group()

	

	
record_data_binhash(h5object)

	Record the identity hash for self.mapper as an attribute on the given HDF5 object (group or dataset)

	
check_data_binhash(h5object)

	Check whether the recorded bin identity hash on the given HDF5 object matches the identity hash for self.mapper

	
assign_to_bins()

	Assign WEST segment data to bins. Requires the DataReader mixin to be in the inheritance tree

	
require_bin_assignments()

	

	
get_bin_assignments(first_iter=None, last_iter=None)

	

	
get_bin_populations(first_iter=None, last_iter=None)

	

	
class westpa.oldtools.aframe.MCBSMixin

	Bases: AnalysisMixin

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
calc_mcbs_nsets(alpha=None)

	

	
calc_ci_bound_indices(n_sets=None, alpha=None)

	

	
class westpa.oldtools.aframe.TrajWalker(data_reader, history_chunksize=100)

	Bases: object

A class to perform analysis by walking the trajectory tree. A stack is used rather than recursion, or else
the highest number of iterations capable of being considered would be the same as the Python recursion limit.

	
trace_to_root(n_iter, seg_id)

	Trace the given segment back to its starting point, returning a list of Segment
objects describing the entire trajectory.

	
get_trajectory_roots(first_iter, last_iter, include_pcoords=True)

	Get segments which start new trajectories. If min_iter or max_iter is specified, restrict the
set of iterations within which the search is conducted.

	
get_initial_nodes(first_iter, last_iter, include_pcoords=True)

	Get segments with which to begin a tree walk – those alive or created within [first_iter,last_iter].

	
trace_trajectories(first_iter, last_iter, callable, include_pcoords=True, cargs=None, ckwargs=None, get_state=None, set_state=None)

	
	Walk the trajectory tree depth-first, calling
	callable(segment, children, history, *cargs, **ckwargs) for each segment

visited. segment is the segment being visited, children is that
segment’s children, history is the chain of segments leading
to segment (not including segment). get_state and set_state are
used to record and reset, respectively, any state specific to
callable when a new branch is traversed.

	
class westpa.oldtools.aframe.TransitionAnalysisMixin

	Bases: AnalysisMixin

	
require_transitions_group()

	

	
delete_transitions_group()

	

	
get_transitions_ds()

	

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
require_transitions()

	

	
find_transitions()

	

	
class westpa.oldtools.aframe.TransitionEventAccumulator(n_bins, output_group, calc_fpts=True)

	Bases: object

	
index_dtype

	alias of uint64

	
count_dtype

	alias of uint64

	
weight_dtype

	alias of float64

	
output_tdat_chunksize = 4096

	

	
tdat_buffersize = 524288

	

	
max_acc = 32768

	

	
clear()

	

	
clear_state()

	

	
get_state()

	

	
set_state(state_dict)

	

	
record_transition_data(tdat)

	Update running statistics and write transition data to HDF5 (with buffering)

	
flush_transition_data()

	Flush any unwritten output that may be present

	
start_accumulation(assignments, weights, bin_pops, traj=0, n_iter=0)

	

	
continue_accumulation(assignments, weights, bin_pops, traj=0, n_iter=0)

	

	
class westpa.oldtools.aframe.BFTransitionAnalysisMixin

	Bases: TransitionAnalysisMixin

	
require_transitions()

	

	
find_transitions(chunksize=65536)

	

	
class westpa.oldtools.aframe.KineticsAnalysisMixin

	Bases: AnalysisMixin

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
parse_bin_range(range_string)

	

	
check_bin_selection(n_bins=None)

	Check to see that the bin ranges selected by the user conform to the available bins (i.e.,
bin indices are within the permissible range). Also assigns the complete bin range if the
user has not explicitly limited the bins to be considered.

	
property selected_bin_pair_iter

	

	
class westpa.oldtools.aframe.CommonOutputMixin

	Bases: AnalysisMixin

	
add_common_output_args(parser_or_group)

	

	
process_common_output_args(args)

	

	
class westpa.oldtools.aframe.PlottingMixin

	Bases: AnalysisMixin

	
require_matplotlib()

	

westpa.oldtools.aframe.atool module

	
class westpa.oldtools.aframe.atool.WESTAnalysisTool

	Bases: object

	
add_args(parser, upcall=True)

	Add arguments to a parser common to all analyses of this type.

	
process_args(args, upcall=True)

	

	
open_analysis_backing()

	

	
close_analysis_backing()

	

	
require_analysis_group(groupname, replace=False)

	

westpa.oldtools.aframe.base_mixin module

	
exception westpa.oldtools.aframe.base_mixin.ArgumentError(*args, **kwargs)

	Bases: RuntimeError

	
class westpa.oldtools.aframe.base_mixin.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

westpa.oldtools.aframe.binning module

	
class westpa.oldtools.aframe.binning.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
class westpa.oldtools.aframe.binning.BinningMixin

	Bases: AnalysisMixin

A mixin for performing binning on WEST data.

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
mapper_from_expr(expr)

	

	
write_bin_labels(dest, header='# bin labels:\n', format='# bin {bin_index:{max_iwidth}d} -- {label!s}\n')

	Print labels for all bins in self.mapper to dest. If provided, header
is printed before any labels. The format string specifies how bin labels are to be printed. Valid entries are:

	bin_index – the zero-based index of the bin

	label – the label, as obtained by bin.label

	max_iwidth – the maximum width (in characters) of the bin index, for pretty alignment

	
require_binning_group()

	

	
delete_binning_group()

	

	
record_data_binhash(h5object)

	Record the identity hash for self.mapper as an attribute on the given HDF5 object (group or dataset)

	
check_data_binhash(h5object)

	Check whether the recorded bin identity hash on the given HDF5 object matches the identity hash for self.mapper

	
assign_to_bins()

	Assign WEST segment data to bins. Requires the DataReader mixin to be in the inheritance tree

	
require_bin_assignments()

	

	
get_bin_assignments(first_iter=None, last_iter=None)

	

	
get_bin_populations(first_iter=None, last_iter=None)

	

westpa.oldtools.aframe.data_reader module

	
class westpa.oldtools.aframe.data_reader.Segment(n_iter=None, seg_id=None, weight=None, endpoint_type=None, parent_id=None, wtg_parent_ids=None, pcoord=None, status=None, walltime=None, cputime=None, data=None)

	Bases: object

A class wrapping segment data that must be passed through the work manager or data manager.
Most fields are self-explanatory. One item worth noting is that a negative parent ID means that
the segment starts from the initial state with ID -(segment.parent_id+1)

	
SEG_STATUS_UNSET = 0

	

	
SEG_STATUS_PREPARED = 1

	

	
SEG_STATUS_COMPLETE = 2

	

	
SEG_STATUS_FAILED = 3

	

	
SEG_INITPOINT_UNSET = 0

	

	
SEG_INITPOINT_CONTINUES = 1

	

	
SEG_INITPOINT_NEWTRAJ = 2

	

	
SEG_ENDPOINT_UNSET = 0

	

	
SEG_ENDPOINT_CONTINUES = 1

	

	
SEG_ENDPOINT_MERGED = 2

	

	
SEG_ENDPOINT_RECYCLED = 3

	

	
statuses = {'SEG_STATUS_COMPLETE': 2, 'SEG_STATUS_FAILED': 3, 'SEG_STATUS_PREPARED': 1, 'SEG_STATUS_UNSET': 0}

	

	
initpoint_types = {'SEG_INITPOINT_CONTINUES': 1, 'SEG_INITPOINT_NEWTRAJ': 2, 'SEG_INITPOINT_UNSET': 0}

	

	
endpoint_types = {'SEG_ENDPOINT_CONTINUES': 1, 'SEG_ENDPOINT_MERGED': 2, 'SEG_ENDPOINT_RECYCLED': 3, 'SEG_ENDPOINT_UNSET': 0}

	

	
status_names = {0: 'SEG_STATUS_UNSET', 1: 'SEG_STATUS_PREPARED', 2: 'SEG_STATUS_COMPLETE', 3: 'SEG_STATUS_FAILED'}

	

	
initpoint_type_names = {0: 'SEG_INITPOINT_UNSET', 1: 'SEG_INITPOINT_CONTINUES', 2: 'SEG_INITPOINT_NEWTRAJ'}

	

	
endpoint_type_names = {0: 'SEG_ENDPOINT_UNSET', 1: 'SEG_ENDPOINT_CONTINUES', 2: 'SEG_ENDPOINT_MERGED', 3: 'SEG_ENDPOINT_RECYCLED'}

	

	
static initial_pcoord(segment)

	Return the initial progress coordinate point of this segment.

	
static final_pcoord(segment)

	Return the final progress coordinate point of this segment.

	
property initpoint_type

	

	
property initial_state_id

	

	
property status_text

	

	
property endpoint_type_text

	

	
class westpa.oldtools.aframe.data_reader.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
westpa.oldtools.aframe.data_reader.parse_int_list(list_string)

	Parse a simple list consisting of integers or ranges of integers separated by commas. Ranges are specified
as min:max, and include the maximum value (unlike Python’s range). Duplicate values are ignored.
Returns the result as a sorted list. Raises ValueError if the list cannot be parsed.

	
class westpa.oldtools.aframe.data_reader.WESTDataReaderMixin

	Bases: AnalysisMixin

A mixin for analysis requiring access to the HDF5 files generated during a WEST run.

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
clear_run_cache()

	

	
property cache_pcoords

	Whether or not to cache progress coordinate data. While caching this data
can significantly speed up some analysis operations, this requires
copious RAM.

Setting this to False when it was formerly True will release any cached data.

	
get_summary_table()

	

	
get_iter_group(n_iter)

	Return the HDF5 group corresponding to n_iter

	
get_segments(n_iter, include_pcoords=True)

	Return all segments present in iteration n_iter

	
get_segments_by_id(n_iter, seg_ids, include_pcoords=True)

	Get segments from the data manager, employing caching where possible

	
get_children(segment, include_pcoords=True)

	

	
get_seg_index(n_iter)

	

	
get_wtg_parent_array(n_iter)

	

	
get_parent_array(n_iter)

	

	
get_pcoord_array(n_iter)

	

	
get_pcoord_dataset(n_iter)

	

	
get_pcoords(n_iter, seg_ids)

	

	
get_seg_ids(n_iter, bool_array=None)

	

	
get_created_seg_ids(n_iter)

	Return a list of seg_ids corresponding to segments which were created for the given iteration (are not
continuations).

	
max_iter_segs_in_range(first_iter, last_iter)

	Return the maximum number of segments present in any iteration in the range selected

	
total_segs_in_range(first_iter, last_iter)

	Return the total number of segments present in all iterations in the range selected

	
get_pcoord_len(n_iter)

	Get the length of the progress coordinate array for the given iteration.

	
get_total_time(first_iter=None, last_iter=None, dt=None)

	Return the total amount of simulation time spanned between first_iter and last_iter (inclusive).

	
class westpa.oldtools.aframe.data_reader.ExtDataReaderMixin

	Bases: AnalysisMixin

An external data reader, primarily designed for reading brute force data, but also suitable
for any auxiliary datasets required for analysis.

	
default_chunksize = 8192

	

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
is_npy(filename)

	

	
load_npy_or_text(filename)

	Load an array from an existing .npy file, or read a text file and
convert to a NumPy array. In either case, return a NumPy array. If a
pickled NumPy dataset is found, memory-map it read-only. If the specified
file does not contain a pickled NumPy array, attempt to read the file using
numpy.loadtxt(filename).

	
text_to_h5dataset(fileobj, group, dsname, dtype=<class 'numpy.float64'>, skiprows=0, usecols=None, chunksize=None)

	Read text-format data from the given filename or file-like object fileobj and write to a newly-created dataset
called dsname in the HDF5 group group. The data is stored as type dtype. By default, the shape is
taken as (number of lines, number of columns); columns can be omitted by specifying a list for usecols,
and lines can be skipped by using skiprows. Data is read in chunks of chunksize rows.

	
npy_to_h5dataset(array, group, dsname, usecols=None, chunksize=None)

	Store the given array into a newly-created dataset named dsname in the HDF5 group
group, optionally only storing a subset of columns. Data is written chunksize rows at a time,
allowing very large memory-mapped arrays to be copied.

	
class westpa.oldtools.aframe.data_reader.BFDataManager

	Bases: AnalysisMixin

A class to manage brute force trajectory data. The primary purpose is to read in and
manage brute force progress coordinate data for one or more trajectories. The trajectories need not
be the same length, but they do need to have the same time spacing for progress coordinate values.

	
traj_index_dtype = dtype([('pcoord_len', '<u8'), ('source_data', 'O')])

	

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
update_traj_index(traj_id, pcoord_len, source_data)

	

	
get_traj_group(traj_id)

	

	
create_traj_group()

	

	
get_n_trajs()

	

	
get_traj_len(traj_id)

	

	
get_max_traj_len()

	

	
get_pcoord_array(traj_id)

	

	
get_pcoord_dataset(traj_id)

	

	
require_bf_h5file()

	

	
close_bf_h5file()

	

westpa.oldtools.aframe.iter_range module

	
class westpa.oldtools.aframe.iter_range.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
exception westpa.oldtools.aframe.iter_range.ArgumentError(*args, **kwargs)

	Bases: RuntimeError

	
class westpa.oldtools.aframe.iter_range.IterRangeMixin

	Bases: AnalysisMixin

A mixin for limiting the range of data considered for a given analysis. This should go after
DataManagerMixin

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
check_iter_range()

	

	
iter_block_iter()

	Return an iterable of (block_first,block_last+1) over the blocks of iterations
selected by –first/–last/–step. NOTE WELL that the second of the pair follows Python
iterator conventions and returns one past the last element of the block.

	
n_iter_blocks()

	Return the number of blocks of iterations (as returned by iter_block_iter) selected by –first/–last/–step.

	
record_data_iter_range(h5object, first_iter=None, last_iter=None)

	Store attributes first_iter and last_iter on the given HDF5 object (group/dataset)

	
record_data_iter_step(h5object, iter_step=None)

	Store attribute iter_step on the given HDF5 object (group/dataset).

	
check_data_iter_range_least(h5object, first_iter=None, last_iter=None)

	Check that the given HDF5 object contains (as denoted by its first_iter/last_iter attributes) at least the
data range specified.

	
check_data_iter_range_equal(h5object, first_iter=None, last_iter=None)

	Check that the given HDF5 object contains per-iteration data for exactly the specified iterations (as denoted by the
object’s first_iter and last_iter attributes

	
check_data_iter_step_conformant(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride suitable for extracting data
with the given stride. (In other words, is the given iter_step a multiple of the stride with
which data was recorded.)

	
check_data_iter_step_equal(h5object, iter_step=None)

	Check that the given HDF5 object contains per-iteration data at an iteration stride the same as
that specified.

	
slice_per_iter_data(dataset, first_iter=None, last_iter=None, iter_step=None, axis=0)

	Return the subset of the given dataset corresponding to the given iteration range and stride. Unless
otherwise specified, the first dimension of the dataset is the one sliced.

	
iter_range(first_iter=None, last_iter=None, iter_step=None)

	

westpa.oldtools.aframe.kinetics module

	
class westpa.oldtools.aframe.kinetics.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
class westpa.oldtools.aframe.kinetics.KineticsAnalysisMixin

	Bases: AnalysisMixin

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
parse_bin_range(range_string)

	

	
check_bin_selection(n_bins=None)

	Check to see that the bin ranges selected by the user conform to the available bins (i.e.,
bin indices are within the permissible range). Also assigns the complete bin range if the
user has not explicitly limited the bins to be considered.

	
property selected_bin_pair_iter

	

westpa.oldtools.aframe.mcbs module

Tools for Monte Carlo bootstrap error analysis

	
class westpa.oldtools.aframe.mcbs.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
class westpa.oldtools.aframe.mcbs.MCBSMixin

	Bases: AnalysisMixin

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
calc_mcbs_nsets(alpha=None)

	

	
calc_ci_bound_indices(n_sets=None, alpha=None)

	

	
westpa.oldtools.aframe.mcbs.calc_mcbs_nsets(alpha)

	Return a bootstrap data set size appropriate for the given confidence level.

	
westpa.oldtools.aframe.mcbs.calc_ci_bound_indices(n_sets, alpha)

	

	
westpa.oldtools.aframe.mcbs.bootstrap_ci_ll(estimator, data, alpha, n_sets, storage, sort, eargs=(), ekwargs={}, fhat=None)

	Low-level routine for calculating bootstrap error estimates. Arguments and return values are as those for
bootstrap_ci, except that no argument is optional except additional arguments for the estimator (eargs, ekwargs).
data must be an array (or subclass), and an additional array storage must be provided, which
must be appropriately shaped and typed to hold n_sets results from estimator. Further, if the
value fhat of the estimator must be pre-calculated to allocate storage, then its value may be
passed; otherwise, estimator(data,*eargs,**kwargs) will be called to calculate it.

	
westpa.oldtools.aframe.mcbs.bootstrap_ci(estimator, data, alpha, n_sets=None, sort=<function msort>, eargs=(), ekwargs={})

	Perform a Monte Carlo bootstrap of a (1-alpha) confidence interval for the given estimator.
Returns (fhat, ci_lower, ci_upper), where fhat is the result of estimator(data, *eargs, **ekwargs),
and ci_lower and ci_upper are the lower and upper bounds of the surrounding confidence
interval, calculated by calling estimator(syndata, *eargs, **ekwargs) on each synthetic data
set syndata. If n_sets is provided, that is the number of synthetic data sets generated,
otherwise an appropriate size is selected automatically (see calc_mcbs_nsets()).

sort, if given, is applied to sort the results of calling estimator on each
synthetic data set prior to obtaining the confidence interval. This function must sort
on the last index.

Individual entries in synthetic data sets are selected by the first index of data, allowing this
function to be used on arrays of multidimensional data.

Returns (fhat, lb, ub, ub-lb, abs((ub-lb)/fhat), and max(ub-fhat,fhat-lb)) (that is, the estimated value, the
lower and upper bounds of the confidence interval, the width of the confidence interval, the relative
width of the confidence interval, and the symmetrized error bar of the confidence interval).

westpa.oldtools.aframe.output module

	
class westpa.oldtools.aframe.output.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
class westpa.oldtools.aframe.output.CommonOutputMixin

	Bases: AnalysisMixin

	
add_common_output_args(parser_or_group)

	

	
process_common_output_args(args)

	

westpa.oldtools.aframe.plotting module

	
class westpa.oldtools.aframe.plotting.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
class westpa.oldtools.aframe.plotting.PlottingMixin

	Bases: AnalysisMixin

	
require_matplotlib()

	

westpa.oldtools.aframe.trajwalker module

	
class westpa.oldtools.aframe.trajwalker.TrajWalker(data_reader, history_chunksize=100)

	Bases: object

A class to perform analysis by walking the trajectory tree. A stack is used rather than recursion, or else
the highest number of iterations capable of being considered would be the same as the Python recursion limit.

	
trace_to_root(n_iter, seg_id)

	Trace the given segment back to its starting point, returning a list of Segment
objects describing the entire trajectory.

	
get_trajectory_roots(first_iter, last_iter, include_pcoords=True)

	Get segments which start new trajectories. If min_iter or max_iter is specified, restrict the
set of iterations within which the search is conducted.

	
get_initial_nodes(first_iter, last_iter, include_pcoords=True)

	Get segments with which to begin a tree walk – those alive or created within [first_iter,last_iter].

	
trace_trajectories(first_iter, last_iter, callable, include_pcoords=True, cargs=None, ckwargs=None, get_state=None, set_state=None)

	
	Walk the trajectory tree depth-first, calling
	callable(segment, children, history, *cargs, **ckwargs) for each segment

visited. segment is the segment being visited, children is that
segment’s children, history is the chain of segments leading
to segment (not including segment). get_state and set_state are
used to record and reset, respectively, any state specific to
callable when a new branch is traversed.

westpa.oldtools.aframe.transitions module

	
class westpa.oldtools.aframe.transitions.AnalysisMixin

	Bases: object

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
class westpa.oldtools.aframe.transitions.TrajWalker(data_reader, history_chunksize=100)

	Bases: object

A class to perform analysis by walking the trajectory tree. A stack is used rather than recursion, or else
the highest number of iterations capable of being considered would be the same as the Python recursion limit.

	
trace_to_root(n_iter, seg_id)

	Trace the given segment back to its starting point, returning a list of Segment
objects describing the entire trajectory.

	
get_trajectory_roots(first_iter, last_iter, include_pcoords=True)

	Get segments which start new trajectories. If min_iter or max_iter is specified, restrict the
set of iterations within which the search is conducted.

	
get_initial_nodes(first_iter, last_iter, include_pcoords=True)

	Get segments with which to begin a tree walk – those alive or created within [first_iter,last_iter].

	
trace_trajectories(first_iter, last_iter, callable, include_pcoords=True, cargs=None, ckwargs=None, get_state=None, set_state=None)

	
	Walk the trajectory tree depth-first, calling
	callable(segment, children, history, *cargs, **ckwargs) for each segment

visited. segment is the segment being visited, children is that
segment’s children, history is the chain of segments leading
to segment (not including segment). get_state and set_state are
used to record and reset, respectively, any state specific to
callable when a new branch is traversed.

	
class westpa.oldtools.aframe.transitions.TransitionEventAccumulator(n_bins, output_group, calc_fpts=True)

	Bases: object

	
index_dtype

	alias of uint64

	
count_dtype

	alias of uint64

	
weight_dtype

	alias of float64

	
output_tdat_chunksize = 4096

	

	
tdat_buffersize = 524288

	

	
max_acc = 32768

	

	
clear()

	

	
clear_state()

	

	
get_state()

	

	
set_state(state_dict)

	

	
record_transition_data(tdat)

	Update running statistics and write transition data to HDF5 (with buffering)

	
flush_transition_data()

	Flush any unwritten output that may be present

	
start_accumulation(assignments, weights, bin_pops, traj=0, n_iter=0)

	

	
continue_accumulation(assignments, weights, bin_pops, traj=0, n_iter=0)

	

	
class westpa.oldtools.aframe.transitions.TransitionAnalysisMixin

	Bases: AnalysisMixin

	
require_transitions_group()

	

	
delete_transitions_group()

	

	
get_transitions_ds()

	

	
add_args(parser, upcall=True)

	

	
process_args(args, upcall=True)

	

	
require_transitions()

	

	
find_transitions()

	

	
class westpa.oldtools.aframe.transitions.BFTransitionAnalysisMixin

	Bases: TransitionAnalysisMixin

	
require_transitions()

	

	
find_transitions(chunksize=65536)

	

westpa.oldtools.cmds package

westpa.oldtools.cmds module

westpa.oldtools.cmds.w_ttimes module

westpa.oldtools.stats package

westpa.oldtools.stats module

	
class westpa.oldtools.stats.RunningStatsAccumulator(shape, dtype=<class 'numpy.float64'>, count_dtype=<class 'numpy.uint64'>, weight_dtype=<class 'numpy.float64'>, mask_value=nan)

	Bases: object

	
incorporate(index, value, weight)

	

	
average()

	

	
mean()

	

	
std()

	

westpa.oldtools.stats.accumulator module

	
class westpa.oldtools.stats.accumulator.RunningStatsAccumulator(shape, dtype=<class 'numpy.float64'>, count_dtype=<class 'numpy.uint64'>, weight_dtype=<class 'numpy.float64'>, mask_value=nan)

	Bases: object

	
incorporate(index, value, weight)

	

	
average()

	

	
mean()

	

	
std()

	

westpa.oldtools.stats.edfs module

	
class westpa.oldtools.stats.edfs.EDF(values, weights=None)

	Bases: object

A class for creating and manipulating empirical distribution functions (cumulative
distribution functions derived from sample data).

Construct a new EDF from the given values and (optionally) weights.

	
static from_array(array)

	

	
static from_arrays(x, F)

	

	
as_array()

	Return this EDF as a (N,2) array, where N is the number of unique values passed to
the constructor. Numpy type casting rules are applied (so, for instance, integral abcissae
are converted to floating-point values).

	
quantiles(p)

	Treating the EDF as a quantile function, return the values of the (statistical) variable whose
probabilities are at least p. That is, Q(p) = inf {x: p <= F(x) }.

	
quantile(p)

	

	
median()

	

	
moment(n)

	Calculate the nth moment of this probability distribution

<x^n> = int_{-inf}^{inf} x^n dF(x)

	
cmoment(n)

	Calculate the nth central moment of this probability distribution

	
mean()

	

	
var()

	Return the second central moment of this probability distribution.

	
std()

	Return the standard deviation (root of the variance) of this probability distribution.

westpa.oldtools.stats.mcbs module

Tools for Monte Carlo bootstrap error analysis

	
westpa.oldtools.stats.mcbs.add_mcbs_options(parser)

	Add arguments concerning Monte Carlo bootstrap (confidence and bssize) to the given parser

	
westpa.oldtools.stats.mcbs.get_bssize(alpha)

	Return a bootstrap data set size appropriate for the given confidence level

	
westpa.oldtools.stats.mcbs.bootstrap_ci(estimator, data, alpha, n_sets=None, args=(), kwargs={}, sort=<function msort>, extended_output=False)

	Perform a Monte Carlo bootstrap of a (1-alpha) confidence interval for the given estimator.
Returns (fhat, ci_lower, ci_upper), where fhat is the result of estimator(data, *args, **kwargs),
and ci_lower and ci_upper are the lower and upper bounds of the surrounding confidence
interval, calculated by calling estimator(syndata, *args, **kwargs) on each synthetic data
set syndata. If n_sets is provided, that is the number of synthetic data sets generated,
otherwise an appropriate size is selected automatically (see get_bssize()).

sort, if given, is applied to sort the results of calling estimator on each
synthetic data set prior to obtaining the confidence interval.

Individual entries in synthetic data sets are selected by the first index of data, allowing this
function to be used on arrays of multidimensional data.

If extended_output is True (by default not), instead of returning (fhat, lb, ub), this function returns
(fhat, lb, ub, ub-lb, abs((ub-lb)/fhat), and max(ub-fhat,fhat-lb)) (that is, the estimated value, the
lower and upper bounds of the confidence interval, the width of the confidence interval, the relative
width of the confidence interval, and the symmetrized error bar of the confidence interval).

westpa.westext package

Currently Supported

	 Adaptive Voronoi Binning
	Submodules

	westpa.westext.adaptvoronoi.adaptVor_driver module
	check_bool()

	ConfigItemMissing

	VoronoiBinMapper
	VoronoiBinMapper.assign()

	AdaptiveVoronoiDriver
	AdaptiveVoronoiDriver.dfunc()

	AdaptiveVoronoiDriver.get_dfunc_method()

	AdaptiveVoronoiDriver.get_mapper_func()

	AdaptiveVoronoiDriver.get_initial_centers()

	AdaptiveVoronoiDriver.update_bin_mapper()

	AdaptiveVoronoiDriver.update_centers()

	AdaptiveVoronoiDriver.prepare_new_iteration()

	Module contents
	AdaptiveVoronoiDriver
	AdaptiveVoronoiDriver.dfunc()

	AdaptiveVoronoiDriver.get_dfunc_method()

	AdaptiveVoronoiDriver.get_mapper_func()

	AdaptiveVoronoiDriver.get_initial_centers()

	AdaptiveVoronoiDriver.update_bin_mapper()

	AdaptiveVoronoiDriver.update_centers()

	AdaptiveVoronoiDriver.prepare_new_iteration()

	 String Method
	Submodules

	westpa.westext.stringmethod.fourier_fitting module

	westpa.westext.stringmethod.string_driver module

	westpa.westext.stringmethod.string_method module

	Module contents

	 haMSM analysis/Restarting
	Description

	Usage
	Configuration
	west.cfg

	Running

	Extensions
	restart_initialization.json

	Featurization overrides

	Doing only post-analysis

	Work manager for restarting

	Continuing a failed run

	Potential Pitfalls/Troubleshooting

	References

Depreciated

	 WEED
	Submodules

	westpa.westext.weed.BinCluster module
	ClusterList
	ClusterList.join()

	ClusterList.join_simple()

	westpa.westext.weed.ProbAdjustEquil module
	probAdjustEquil()

	westpa.westext.weed.UncertMath module
	UncertContainer
	UncertContainer.transpose()

	UncertContainer.recip()

	UncertContainer.update_mask()

	UncertContainer.concatenate()

	UncertContainer.weighted_average()

	westpa.westext.weed.weed_driver module
	check_bool()

	RateAverager
	RateAverager.extract_data()

	RateAverager.task_generator()

	RateAverager.calculate()

	probAdjustEquil()

	bins_from_yaml_dict()

	WEEDDriver
	WEEDDriver.get_rates()

	WEEDDriver.prepare_new_iteration()

	Module contents
	probAdjustEquil()

	WEEDDriver
	WEEDDriver.get_rates()

	WEEDDriver.prepare_new_iteration()

	 WESS
	Submodules

	westpa.westext.wess.ProbAdjust module
	solve_steady_state()

	prob_adjust()

	westpa.westext.wess.wess_driver module
	check_bool()

	RateAverager
	RateAverager.extract_data()

	RateAverager.task_generator()

	RateAverager.calculate()

	prob_adjust()

	bins_from_yaml_dict()

	reduce_array()

	WESSDriver
	WESSDriver.get_rates()

	WESSDriver.prepare_new_iteration()

	Module contents
	prob_adjust()

	WESSDriver
	WESSDriver.get_rates()

	WESSDriver.prepare_new_iteration()

Module contents

westpa.westext.adaptvoronoi package

Submodules

westpa.westext.adaptvoronoi.adaptVor_driver module

	
westpa.westext.adaptvoronoi.adaptVor_driver.check_bool(value, action='warn')

	Check that the given value is boolean in type. If not, either
raise a warning (if action=='warn') or an exception (action=='raise').

	
exception westpa.westext.adaptvoronoi.adaptVor_driver.ConfigItemMissing(key, message=None)

	Bases: KeyError

	
class westpa.westext.adaptvoronoi.adaptVor_driver.VoronoiBinMapper(dfunc, centers, dfargs=None, dfkwargs=None)

	Bases: BinMapper

A one-dimensional mapper which assigns a multidimensional pcoord to the
closest center based on a distance metric. Both the list of centers and the
distance function must be supplied.

	
assign(coords, mask=None, output=None)

	

	
class westpa.westext.adaptvoronoi.adaptVor_driver.AdaptiveVoronoiDriver(sim_manager, plugin_config)

	Bases: object

This plugin implements an adaptive scheme using voronoi bins from
Zhang 2010, J Chem Phys, 132. The options exposed to the configuration
file are:

	av_enabled (bool, default False): Enables adaptive binning

	max_centers (int, default 10): The maximum number of voronoi centers to be placed

	walk_count (integer, default 5): Number of walkers per voronoi center

	center_freq (ingeter, default 1): Frequency of center placement

	priority (integer, default 1): Priority in the plugin order

	
	dfunc_method (function, non-optional, no default): Non-optional user defined
	function that will be used to calculate distances between voronoi centers and
data points

	
	mapper_func (function, optional): Optional user defined function for building bin
	mappers for more complicated binning schemes e.g. embedding the voronoi binning
in a portion of the state space. If not defined the plugin will build a
VoronoiBinMapper with the information it has.

	
dfunc()

	Distance function to be used by the plugin. This function
will be used to calculate the distance between each point.

	
get_dfunc_method(plugin_config)

	

	
get_mapper_func(plugin_config)

	

	
get_initial_centers()

	This function pulls from the centers from either the
previous bin mapper or uses the definition from the
system to calculate the number of centers

	
update_bin_mapper()

	Update the bin_mapper using the current set of voronoi centers

	
update_centers(iter_group)

	Update the set of Voronoi centers according to
Zhang 2010, J Chem Phys, 132. A short description
of the algorithm can be found in the text:

1) First reference structure is chosen randomly from
the first set of given structure
2) Given a set of n reference structures, for each
configuration in the iteration the distances to each
reference structure is calculated and the minimum
distance is found
3) The configuration with the minimum distance is
selected as the next reference

	
prepare_new_iteration()

	

Module contents

	
class westpa.westext.adaptvoronoi.AdaptiveVoronoiDriver(sim_manager, plugin_config)

	Bases: object

This plugin implements an adaptive scheme using voronoi bins from
Zhang 2010, J Chem Phys, 132. The options exposed to the configuration
file are:

	av_enabled (bool, default False): Enables adaptive binning

	max_centers (int, default 10): The maximum number of voronoi centers to be placed

	walk_count (integer, default 5): Number of walkers per voronoi center

	center_freq (ingeter, default 1): Frequency of center placement

	priority (integer, default 1): Priority in the plugin order

	
	dfunc_method (function, non-optional, no default): Non-optional user defined
	function that will be used to calculate distances between voronoi centers and
data points

	
	mapper_func (function, optional): Optional user defined function for building bin
	mappers for more complicated binning schemes e.g. embedding the voronoi binning
in a portion of the state space. If not defined the plugin will build a
VoronoiBinMapper with the information it has.

	
dfunc()

	Distance function to be used by the plugin. This function
will be used to calculate the distance between each point.

	
get_dfunc_method(plugin_config)

	

	
get_mapper_func(plugin_config)

	

	
get_initial_centers()

	This function pulls from the centers from either the
previous bin mapper or uses the definition from the
system to calculate the number of centers

	
update_bin_mapper()

	Update the bin_mapper using the current set of voronoi centers

	
update_centers(iter_group)

	Update the set of Voronoi centers according to
Zhang 2010, J Chem Phys, 132. A short description
of the algorithm can be found in the text:

1) First reference structure is chosen randomly from
the first set of given structure
2) Given a set of n reference structures, for each
configuration in the iteration the distances to each
reference structure is calculated and the minimum
distance is found
3) The configuration with the minimum distance is
selected as the next reference

	
prepare_new_iteration()

	

westpa.westext.stringmethod package

Submodules

westpa.westext.stringmethod.fourier_fitting module

westpa.westext.stringmethod.string_driver module

westpa.westext.stringmethod.string_method module

Module contents

westpa.westext.hamsm_restarting package

Description

This plugin leverages haMSM analysis [1] to provide simulation post-analysis. This post-analysis can be used on its own,
or can be used to initialize and run new WESTPA simulations using structures in the haMSM’s best estimate of steady-state
as described in [2], which may accelerate convergence to steady-state.

haMSM analysis is performed using the msm_we [https://github.com/westpa/msm_we] library.

Sample files necessary to run the restarting plugin (as described below) can be found in the WESTPA GitHub Repo [https://github.com/westpa/westpa/tree/westpa2/src/westpa/westext/hamsm_restarting].

Usage

Configuration

west.cfg

This plugin requires the following section in west.cfg (or whatever your WE configuration file is named):

west:
 plugins:
 - plugin: westpa.westext.hamsm_restarting.restart_driver.RestartDriver
 n_restarts: 0 # Number of restarts to perform
 n_runs: 5 # Number of runs within each restart
 n_restarts_to_use: 0.5 # Amount of prior restarts' data to use. -1, a decimal in (0,1), or an integer. Details below.
 extension_iters: 5 # Number of iterations to continue runs for, if target is not reached by first restart period
 coord_len: 2 # Length of pcoords returned
 initialization_file: restart_initialization.json # JSON describing w_run parameters for new runs
 ref_pdb_file: common_files/bstate.pdb # File containing reference structure/topology
 model_name: NaClFlux # Name for msm_we model
 n_clusters: 2 # Number of clusters in haMSM building
 we_folder: . # Should point to the same directory as WEST_SIM_ROOT
 target_pcoord_bounds: [[-inf, 2.60]] # Progress coordinate boundaries for the target state
 basis_pcoord_bounds: [[12.0, inf]] # Progress coordinate boundaries for the basis state
 tau: 5e-13 # Resampling time, i.e. length of a WE iteration in physical units
 pcoord_ndim0: 1 # Dimensionality of progress coordinate
 dim_reduce_method: pca # Dimensionality reduction scheme, either "pca", "vamp", or "none"
 parent_traj_filename: parent.xml # Name of parent file in each segment
 child_traj_filename: seg.xml # Name of child file in each segment
 user_functions: westpa_scripts/restart_overrides.py # Python file defining coordinate processing
 struct_filetype: mdtraj.formats.PDBTrajectoryFile # Filetype for output start-structures
 debug: False # Optional, defaults to False. If true, enables debug-mode logging.
 streaming: True # Does clustering in a streaming fashion, versus trying to load all coords in memory
 n_cpus: 1 # Number of CPUs to use for parallel calculations

Some sample parameters are provided in the above, but of course should be modified to your specific system.

Note about restarts_to_use : restarts_to_use can be specified in a few different ways. A value of -1 means
to use all available data. A decimal 0 < restarts_to_use < 1 will use the last restarts_to_use * current_restart
iterations of data – so, for example, set to 0.5 to use the last half of the data, or 0.75 to use the last 3/4. Finally,
and integer value will just use the last restarts_to_use iterations.

Note that ref_pdb_file can be any filetype supported by msm_we.initialize()’s structure loading.
At the time of writing, this is limited to PDB, however that is planned to be extended.
Also at the time of writing, that’s only used to set model.nAtoms, so if you’re using some weird topology that’s
unsupported, you should be able to scrap that and manually set nAtoms on the object.

Also in this file, west.data.data_refs.basis_state MUST point to
$WEST_SIM_ROOT/{basis_state.auxref} and not a subdirectory if restarts are being used.
This is because when the plugin initiates a restart, start_state
references in $WEST_SIM_ROOT/restartXX/start_states.txt are set relative to $WEST_SIM_ROOT. All basis/start
state references are defined relative to west.data.data_refs.basis_state, so if that points to a subdirectory of
$WEST_SIM_ROOT, those paths will not be accurate.

Running

Once configured, just run your WESTPA simulation normally with w_run, and the plugin will automatically handle performing restarts, and extensions if necessary.

Extensions

To be clear: these are extensions in the sense of extending a simulation to be longer – not in the sense of “an extension to the WESTPA software package”!

Running with extension_iters greater than 0 will enable extensions before the first restart if the target
state is not reached.
This is useful to avoid restarting when you don’t yet have structures spanning all the way from your basis to target.
At the time of writing, it’s not yet clear whether restarting from “incomplete” WE runs like this will help or hinder
the total number of iterations it takes to reach the target.

Extensions are simple and work as follows: before doing the first restart, after all runs are complete, the output
WESTPA h5 files are scanned to see if any recycling has occurred.
If it hasn’t, then each run is extended by extension_iters iterations.

restart_initialization.json

{
 "bstates":["start,1,bstates/bstate.pdb"],
 "tstates":["bound,2.6"],
 "bstate-file":"bstates/bstates.txt",
 "tstate-file" :"tstate.file",
 "segs-per-state": 1
}

It is not necessary to specify both in-line states and a state-file for each, but that is shown in the sample for
completeness.

It is important that bstates and tstates are lists of strings, and not just strings, even if only one
bstate/tstate is being used!

With n_runs > 1, before doing any restart, multiple independent runs are performed. However, before the first
restart (this applies if no restarts are performed as well), the plugin has no way of accessing the parameters that
were initially passed to w_init and w_run.

Therefore, it is necessary to store those parameters in a file, so the plugin can read them and initiate subsequent runs.

After the first restart is performed, the plugin writes this file itself, so it is only necessary to manually configure
for that first set of runs.

Featurization overrides

import numpy as np
import mdtraj as md

def processCoordinates(self, coords):
 log.debug("Processing coordinates")

 if self.dimReduceMethod == "none":
 nC = np.shape(coords)
 nC = nC[0]
 ndim = 3 * self.nAtoms
 data = coords.reshape(nC, 3 * self.nAtoms)
 return data

 if self.dimReduceMethod == "pca" or self.dimReduceMethod == "vamp":

 ### NaCl RMSD dimensionality reduction
 log.warning("Hardcoded selection: Doing dim reduction for Na, Cl. This is only for testing!")
 indNA = self.reference_structure.topology.select("element Na")
 indCL = self.reference_structure.topology.select("element Cl")

 diff = np.subtract(coords[:, indNA], coords[:, indCL])

 dist = np.array(np.sqrt(
 np.mean(
 np.power(
 diff,
 2)
 , axis=-1)
))

 return dist

This is the file whose path is provided in the configuration file in plugin.user_functions, and must be a Python
file defining a function named processCoordinates(self, coords) which takes a numpy array of coordinates,
featurizes it, and returns the numpy array of feature-coordinates.

This is left to be user-provided because whatever featurization you do will be system-specific. The provided function
is monkey-patched into the msm_we.modelWE class.

An example is provided above, which does a simple RMSD coordinate reduction for the NaCl association tutorial system.

Doing only post-analysis

If you want to ONLY use this for haMSM post-analysis, and not restarting, just set n_restarts: 0 in the configuration.

Work manager for restarting

If you’re using some parallelism (which you should), and you’re using the plugin to do restarts or multiple runs,
then your choice of work manager can be important.
This plugin handles starting new WESTPA runs using the Python API.
The process work manager, by default, uses fork to start new workers which seems to eventually causes
memory issues, since fork passes the entire contents of the parent to each child.
Switching the spawn method to forkserver or spawn may introduce other issues.

Using the ZMQ work manager works well. The MPI work manager should also work well, though is untested.
Both of these handle starting new workers in a more efficient way, without copying the full state of the parent.

Continuing a failed run

The restarting plugin has a few different things it expects to find when it runs.
Crashes during the WE run should not affect this.
However, if the plugin itself crashes while running, these may be left in a weird state.

If the plugin crashes while running, make sure:

	restart.dat contains the correct entries. restarts_completed is the number of restarts successfully completed, and same for runs_completed within that restart.

	restart_initialization.json is pointing to the correct restart

It may help to w_truncate the very last iteration and allow WESTPA to re-do it.

Potential Pitfalls/Troubleshooting

	Basis state calculation may take a LONG time with a large number of start-states. A simple RMSD calculation using cpptraj and 500,000 start-states took over 6 hours. Reducing the number of runs used through n_restarts_to_use will ameliorate this.

	If restart_driver.prepare_coordinates() has written a coordinate for an iteration, subsequent runs will NOT overwrite it, and will skip it.

	In general: verify that msm_we [https://github.com/jdrusso/msm_we] is installed

	Verify that restart_initialization.json has been correctly set

	This plugin does not yet attempt to resolve environment variables in the config, so things like say, $WEST_SIM_ROOT, will be interpreted literally in paths

References

[1] Suárez, E., Adelman, J. L. & Zuckerman, D. M. Accurate Estimation of Protein Folding and Unfolding Times: Beyond Markov State Models. J Chem Theory Comput 12, 3473–3481 (2016).

[2] Copperman, J. & Zuckerman, D. M. Accelerated Estimation of Long-Timescale Kinetics from Weighted Ensemble Simulation via Non-Markovian “Microbin” Analysis. J Chem Theory Comput 16, 6763–6775 (2020).

westpa.westext.weed package

Submodules

westpa.westext.weed.BinCluster module

	
class westpa.westext.weed.BinCluster.ClusterList(ratios, nbins)

	Bases: object

	
join(pairs)

	Join clusters given a tuple (i,j) of bin pairs

	
join_simple(pairs)

	Join clusters using direct ratios given a tuple (i,j) of bin pairs

westpa.westext.weed.ProbAdjustEquil module

	
westpa.westext.weed.ProbAdjustEquil.probAdjustEquil(binProb, rates, uncert, threshold=0.0, fullCalcClust=False, fullCalcBins=False)

	This function adjusts bin pops in binProb using rates and uncert matrices
fullCalcBins –> True for weighted avg, False for simple calc
fullCalcClust –> True for weighted avg, False for simple calc
threshold –> minimum weight (relative to max) for another value to be averaged

only matters if fullCalcBins == True (or later perhaps if fullCalcClust == True)

westpa.westext.weed.UncertMath module

	
class westpa.westext.weed.UncertMath.UncertContainer(vals, vals_dmin, vals_dmax, mask=False)

	Bases: object

Container to hold uncertainty measurements. Data is convert to np masked arrays
to avoid possible numerical problems

	
transpose()

	

	
recip()

	

	
update_mask()

	

	
concatenate(value, axis=0)

	Concatentate UncertContainer value to self.
Assumes that if dimensions of self and value do not match, to
add a np.newaxis along axis of value

	
weighted_average(axis=0, expaxis=None)

	Calculate weighted average of data along axis
after optionally inserting a new dimension into the
shape array at position expaxis

westpa.westext.weed.weed_driver module

	
westpa.westext.weed.weed_driver.check_bool(value, action='warn')

	Check that the given value is boolean in type. If not, either
raise a warning (if action=='warn') or an exception (action=='raise').

	
class westpa.westext.weed.weed_driver.RateAverager(bin_mapper, system=None, data_manager=None, work_manager=None)

	Bases: object

Calculate bin-to-bin kinetic properties (fluxes, rates, populations) at
1-tau resolution

	
extract_data(iter_indices)

	Extract data from the data_manger and place in dict mirroring the same
underlying layout.

	
task_generator(iter_start, iter_stop, block_size)

	

	
calculate(iter_start=None, iter_stop=None, n_blocks=1, queue_size=1)

	Read the HDF5 file and collect flux matrices and population vectors
for each bin for each iteration in the range [iter_start, iter_stop). Break
the calculation into n_blocks blocks. If the calculation is broken up into
more than one block, queue_size specifies the maxmimum number of tasks in
the work queue.

	
westpa.westext.weed.weed_driver.probAdjustEquil(binProb, rates, uncert, threshold=0.0, fullCalcClust=False, fullCalcBins=False)

	This function adjusts bin pops in binProb using rates and uncert matrices
fullCalcBins –> True for weighted avg, False for simple calc
fullCalcClust –> True for weighted avg, False for simple calc
threshold –> minimum weight (relative to max) for another value to be averaged

only matters if fullCalcBins == True (or later perhaps if fullCalcClust == True)

	
westpa.westext.weed.weed_driver.bins_from_yaml_dict(bin_dict)

	

	
class westpa.westext.weed.weed_driver.WEEDDriver(sim_manager, plugin_config)

	Bases: object

	
get_rates(n_iter, mapper)

	Get rates and associated uncertainties as of n_iter, according to the window size the user
has selected (self.windowsize)

	
prepare_new_iteration()

	

Module contents

westext.weed – Support for weighted ensemble equilibrium dynamics

Initial code by Dan Zuckerman (May 2011), integration by Matt Zwier,
and testing by Carsen Stringer. Re-factoring and optimization of probability
adjustment routines by Joshua L. Adelman (January 2012).

	
westpa.westext.weed.probAdjustEquil(binProb, rates, uncert, threshold=0.0, fullCalcClust=False, fullCalcBins=False)

	This function adjusts bin pops in binProb using rates and uncert matrices
fullCalcBins –> True for weighted avg, False for simple calc
fullCalcClust –> True for weighted avg, False for simple calc
threshold –> minimum weight (relative to max) for another value to be averaged

only matters if fullCalcBins == True (or later perhaps if fullCalcClust == True)

	
class westpa.westext.weed.WEEDDriver(sim_manager, plugin_config)

	Bases: object

	
get_rates(n_iter, mapper)

	Get rates and associated uncertainties as of n_iter, according to the window size the user
has selected (self.windowsize)

	
prepare_new_iteration()

	

westpa.westext.wess package

Submodules

westpa.westext.wess.ProbAdjust module

	
westpa.westext.wess.ProbAdjust.solve_steady_state(T, U, target_bins_index)

	

	
westpa.westext.wess.ProbAdjust.prob_adjust(binprob, rates, uncert, oldindex, targets=[])

	

westpa.westext.wess.wess_driver module

	
westpa.westext.wess.wess_driver.check_bool(value, action='warn')

	Check that the given value is boolean in type. If not, either
raise a warning (if action=='warn') or an exception (action=='raise').

	
class westpa.westext.wess.wess_driver.RateAverager(bin_mapper, system=None, data_manager=None, work_manager=None)

	Bases: object

Calculate bin-to-bin kinetic properties (fluxes, rates, populations) at
1-tau resolution

	
extract_data(iter_indices)

	Extract data from the data_manger and place in dict mirroring the same
underlying layout.

	
task_generator(iter_start, iter_stop, block_size)

	

	
calculate(iter_start=None, iter_stop=None, n_blocks=1, queue_size=1)

	Read the HDF5 file and collect flux matrices and population vectors
for each bin for each iteration in the range [iter_start, iter_stop). Break
the calculation into n_blocks blocks. If the calculation is broken up into
more than one block, queue_size specifies the maxmimum number of tasks in
the work queue.

	
westpa.westext.wess.wess_driver.prob_adjust(binprob, rates, uncert, oldindex, targets=[])

	

	
westpa.westext.wess.wess_driver.bins_from_yaml_dict(bin_dict)

	

	
westpa.westext.wess.wess_driver.reduce_array(Aij)

	Remove empty rows and columns from an array Aij and return the reduced
array Bij and the list of non-empty states

	
class westpa.westext.wess.wess_driver.WESSDriver(sim_manager, plugin_config)

	Bases: object

	
get_rates(n_iter, mapper)

	Get rates and associated uncertainties as of n_iter, according to the window size the user
has selected (self.windowsize)

	
prepare_new_iteration()

	

Module contents

	
westpa.westext.wess.prob_adjust(binprob, rates, uncert, oldindex, targets=[])

	

	
class westpa.westext.wess.WESSDriver(sim_manager, plugin_config)

	Bases: object

	
get_rates(n_iter, mapper)

	Get rates and associated uncertainties as of n_iter, according to the window size the user
has selected (self.windowsize)

	
prepare_new_iteration()

	

westpa.analysis package

This subpackage provides an API to facilitate the analysis of WESTPA
simulation data. Its core abstraction is the Run class.
A Run instance provides a read-only view of a WEST HDF5 (“west.h5”) file.

API reference: https://westpa.readthedocs.io/en/latest/documentation/analysis/

How To

Open a run:

>>> from westpa.analysis import Run
>>> run = Run.open('west.h5')
>>> run
<WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>

Iterate over iterations and walkers:

>>> for iteration in run:
... for walker in iteration:
... pass
...

Access a particular iteration:

>>> iteration = run.iteration(10)
>>> iteration
Iteration(10, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))

Access a particular walker:

>>> walker = iteration.walker(4)
>>> walker
Walker(4, Iteration(10, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))

Get the weight and progress coordinate values of a walker:

>>> walker.weight
9.876543209876543e-06
>>> walker.pcoords
array([[3.1283207],
 [3.073721],
 [2.959221],
 [2.6756208],
 [2.7888207]], dtype=float32)

Get the parent and children of a walker:

>>> walker.parent
Walker(2, Iteration(9, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
>>> for child in walker.children:
... print(child)
...
Walker(0, Iteration(11, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(1, Iteration(11, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(2, Iteration(11, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(3, Iteration(11, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(4, Iteration(11, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))

Trace the ancestry of a walker:

>>> trace = walker.trace()
>>> trace
Trace(Walker(4, Iteration(10, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>)))
>>> for walker in trace:
... print(walker)
...
Walker(1, Iteration(1, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(4, Iteration(2, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(5, Iteration(3, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(6, Iteration(4, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(9, Iteration(5, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(8, Iteration(6, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(8, Iteration(7, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(13, Iteration(8, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(2, Iteration(9, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))
Walker(4, Iteration(10, <WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>))

Close a run (and its underlying HDF5 file):

>>> run.close()
>>> run
<Closed WESTPA Run at 0x7fcaf8f0d5b0>
>>> run.h5file
<Closed HDF5 file>

Retrieving Trajectories

Built-in Reader

MD trajectory data stored in an identical manner as in the
Basic NaCl tutorial [https://github.com/westpa/westpa_tutorials/tree/main/basic_nacl]
may be retrieved using the built-in BasicMDTrajectory reader with its
default settings:

>>> from westpa.analysis import BasicMDTrajectory
>>> trajectory = BasicMDTrajectory()

Here trajectory is a callable object that takes either a Walker or
a Trace instance as input and returns an
MDTraj Trajectory [https://mdtraj.org/1.9.5/api/generated/mdtraj.Trajectory.html]:

>>> traj = trajectory(walker)
>>> traj
<mdtraj.Trajectory with 5 frames, 33001 atoms, 6625 residues, and unitcells at 0x7fcae484ad00>
>>> traj = trajectory(trace)
>>> traj
<mdtraj.Trajectory with 41 frames, 33001 atoms, 6625 residues, and unitcells at 0x7fcae487c790>

Minor variations of the “basic” trajectory storage protocol (e.g., use of
different file formats) can be handled by changing the parameters of the
BasicMDTrajectory reader. For example, suppose that instead of storing
the coordinate and topology data for trajectory segments in separate
files (“seg.dcd” and “bstate.pdb”), we store them together in a
MDTraj HDF5 [https://mdtraj.org/1.9.5/hdf5_format.html] trajectory file
(“seg.h5”). This change can be accommodated by explicitly setting the
traj_ext and top parameters of the trajectory reader:

>>> trajectory = BasicMDTrajectory(traj_ext='.h5', top=None)

Trajectories that are saved with the HDF5 Framework can use HDF5MDTrajectory reader instead.

Custom Readers

For users requiring greater flexibility, custom trajectory readers can be
implemented using the westpa.analysis.Trajectory class. Implementing
a custom reader requires two ingredients:

	A function for retrieving individual trajectory segments. The function
must take a Walker instance as its first argument and return a sequence
(e.g., a list, NumPy array, or MDTraj Trajectory) representing the
trajectory of the walker. Moreover, it must accept a Boolean keyword
argument include_initpoint, which specifies whether the returned
trajectory includes its initial point.

	A function for concatenating trajectory segments. A default implementation
is provided by the concatenate() function in the
westpa.analysis.trajectories module.

westpa.analysis.core module

	
class westpa.analysis.core.Run(h5filename='west.h5')

	A read-only view of a WESTPA simulation run.

	Parameters:

	h5filename (str or file-like object, default 'west.h5') – Pathname or stream of a main WESTPA HDF5 data file.

	
classmethod open(h5filename='west.h5')

	Alternate constructor.

	Parameters:

	h5filename (str or file-like object, default 'west.h5') – Pathname or stream of a main WESTPA HDF5 data file.

	
close()

	Close the Run instance by closing the underlying WESTPA HDF5 file.

	
property closed

	Whether the Run instance is closed.

	Type:

	bool

	
property summary

	Summary data by iteration.

	Type:

	pd.DataFrame

	
property num_iterations

	Number of completed iterations.

	Type:

	int

	
property iterations

	Sequence of iterations.

	Type:

	Sequence[Iteration]

	
property num_walkers

	Total number of walkers.

	Type:

	int

	
property num_segments

	Total number of trajectory segments (alias self.num_walkers).

	Type:

	int

	
property walkers

	All walkers in the run.

	Type:

	Iterable[Walker]

	
property recycled_walkers

	Walkers that stopped in the sink.

	Type:

	Iterable[Walker]

	
property initial_walkers

	Walkers whose parents are initial states.

	Type:

	Iterable[Walker]

	
iteration(number)

	Return a specific iteration.

	Parameters:

	number (int) – Iteration number (1-based).

	Returns:

	The iteration indexed by number.

	Return type:

	Iteration

	
class westpa.analysis.core.Iteration(number, run)

	An iteration of a WESTPA simulation.

	Parameters:

	
	number (int) – Iteration number (1-based).

	run (Run) – Simulation run to which the iteration belongs.

	
property h5group

	HDF5 group containing the iteration data.

	Type:

	h5py.Group

	
property prev

	Previous iteration.

	Type:

	Iteration

	
property next

	Next iteration.

	Type:

	Iteration

	
property summary

	Iteration summary.

	Type:

	pd.DataFrame

	
property segment_summaries

	Segment summary data for the iteration.

	Type:

	pd.DataFrame

	
property pcoords

	Progress coordinate snaphots of each walker.

	Type:

	3D ndarray

	
property weights

	Statistical weight of each walker.

	Type:

	1D ndarray

	
property bin_target_counts

	Target count for each bin.

	Type:

	1D ndarray, dtype=uint64

	
property bin_mapper

	Bin mapper used in the iteration.

	Type:

	BinMapper

	
property num_bins

	Number of bins.

	Type:

	int

	
property bins

	Bins.

	Type:

	Iterable[Bin]

	
property num_walkers

	Number of walkers in the iteration.

	Type:

	int

	
property num_segments

	Number of trajectory segments (alias self.num_walkers).

	Type:

	int

	
property walkers

	Walkers in the iteration.

	Type:

	Iterable[Walker]

	
property recycled_walkers

	Walkers that stopped in the sink.

	Type:

	Iterable[Walker]

	
property initial_walkers

	Walkers whose parents are initial states.

	Type:

	Iterable[Walker]

	
property auxiliary_data

	Auxiliary data stored for the iteration.

	Type:

	h5py.Group or None

	
property basis_state_summaries

	Basis state summary data.

	Type:

	pd.DataFrame

	
property basis_state_pcoords

	Progress coordinates of each basis state.

	Type:

	2D ndarray

	
property basis_states

	Basis states in use for the iteration.

	Type:

	list[BasisState]

	
property has_target_states

	Whether target (sink) states are defined for this iteration.

	Type:

	bool

	
property target_state_summaries

	Target state summary data.

	Type:

	pd.DataFrame or None

	
property target_state_pcoords

	Progress coordinates of each target state.

	Type:

	2D ndarray or None

	
property target_states

	Target states in use for the iteration.

	Type:

	list[TargetState]

	
property sink

	Union of bins serving as the recycling sink.

	Type:

	BinUnion or None

	
bin(index)

	Return the bin with the given index.

	Parameters:

	index (int) – Bin index (0-based).

	Returns:

	The bin indexed by index.

	Return type:

	Bin

	
walker(index)

	Return the walker with the given index.

	Parameters:

	index (int) – Walker index (0-based).

	Returns:

	The walker indexed by index.

	Return type:

	Walker

	
basis_state(index)

	Return the basis state with the given index.

	Parameters:

	index (int) – Basis state index (0-based).

	Returns:

	The basis state indexed by index.

	Return type:

	BasisState

	
target_state(index)

	Return the target state with the given index.

	Parameters:

	index (int) – Target state index (0-based).

	Returns:

	The target state indexed by index.

	Return type:

	TargetState

	
class westpa.analysis.core.Walker(index, iteration)

	A walker in an iteration of a WESTPA simulation.

	Parameters:

	
	index (int) – Walker index (0-based).

	iteration (Iteration) – Iteration to which the walker belongs.

	
property run

	Run to which the walker belongs.

	Type:

	Run

	
property weight

	Statistical weight of the walker.

	Type:

	float64

	
property pcoords

	Progress coordinate snapshots.

	Type:

	2D ndarray

	
property num_snapshots

	Number of snapshots.

	Type:

	int

	
property segment_summary

	Segment summary data.

	Type:

	pd.Series

	
property parent

	The parent of the walker.

	Type:

	Walker or InitialState

	
property children

	The children of the walker.

	Type:

	Iterable[Walker]

	
property recycled

	True if the walker stopped in the sink, False otherwise.

	Type:

	bool

	
property initial

	True if the parent of the walker is an initial state, False otherwise.

	Type:

	bool

	
property auxiliary_data

	Auxiliary data for the walker.

	Type:

	dict

	
trace(**kwargs)

	Return the trace (ancestral line) of the walker.

For full documentation see Trace.

	Returns:

	The trace of the walker.

	Return type:

	Trace

	
class westpa.analysis.core.BinUnion(indices, mapper)

	A (disjoint) union of bins defined by a common bin mapper.

	Parameters:

	
	indices (iterable of int) – The indices of the bins comprising the union.

	mapper (BinMapper) – The bin mapper defining the bins.

	
union(*others)

	Return the union of the bin union and all others.

	Parameters:

	*others (BinUnion) – Other BinUnion instances, consisting of bins defined by
the same underlying bin mapper.

	Returns:

	The union of self and others.

	Return type:

	BinUnion

	
intersection(*others)

	Return the intersection of the bin union and all others.

	Parameters:

	*others (BinUnion) – Other BinUnion instances, consisting of bins defined by
the same underlying bin mapper.

	Returns:

	The itersection of self and others.

	Return type:

	BinUnion

	
class westpa.analysis.core.Bin(index, mapper)

	A bin defined by a bin mapper.

	Parameters:

	
	index (int) – The index of the bin.

	mapper (BinMapper) – The bin mapper defining the bin.

	
class westpa.analysis.core.Trace(walker, source=None, max_length=None)

	A trace of a walker’s ancestry.

	Parameters:

	
	walker (Walker) – The terminal walker.

	source (Bin, BinUnion, or collections.abc.Container, optional) – A source (macro)state, specified as a container object whose
__contains__() method is the indicator function for the
corresponding subset of progress coordinate space. The trace is
stopped upon encountering a walker that stopped in source.

	max_length (int, optional) – The maximum number of walkers in the trace.

westpa.analysis.trajectories module

	
class westpa.analysis.trajectories.Trajectory(fget=None, *, fconcat=None)

	A callable that returns the trajectory of a walker or trace.

	Parameters:

	
	fget (callable) – Function for retrieving a single trajectory segment. Must take a
Walker instance as its first argument and accept a boolean
keyword argument include_initpoint. The function should return a
sequence (e.g., a list or ndarray) representing the trajectory of
the walker. If include_initpoint is True, the trajectory segment
should include its initial point. Otherwise, the trajectory segment
should exclude its initial point.

	fconcat (callable, optional) – Function for concatenating trajectory segments. Must take a sequence
of trajectory segments as input and return their concatenation. The
default concatenation function is concatenate().

	
property segment_collector

	Segment retrieval manager.

	Type:

	SegmentCollector

	
property fget

	Function for getting trajectory segments.

	Type:

	callable

	
property fconcat

	Function for concatenating trajectory segments.

	Type:

	callable

	
class westpa.analysis.trajectories.SegmentCollector(trajectory, use_threads=False, max_workers=None, show_progress=False)

	An object that manages the retrieval of trajectory segments.

	Parameters:

	
	trajectory (Trajectory) – The trajectory to which the segment collector is attached.

	use_threads (bool, default False) – Whether to use a pool of threads to retrieve trajectory segments
asynchronously. Setting this parameter to True may be may be
useful when segment retrieval is an I/O bound task.

	max_workers (int, optional) – Maximum number of threads to use. The default value is specified in the
ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor]
documentation.

	show_progress (bool, default False) – Whether to show a progress bar when retrieving multiple segments.

	
get_segments(walkers, initpoint_mask=None, **kwargs)

	Retrieve the trajectories of multiple walkers.

	Parameters:

	
	walkers (sequence of Walker) – The walkers for which to retrieve trajectories.

	initpoint_mask (sequence of bool, optional) – A Boolean mask indicating whether each trajectory segment should
include (True) or exclude (False) its initial point. Default is
all True.

	Returns:

	The trajectory of each walker.

	Return type:

	list of sequences

	
class westpa.analysis.trajectories.BasicMDTrajectory(top='bstate.pdb', traj_ext='.dcd', state_ext='.xml', sim_root='.')

	Trajectory reader for MD trajectories stored as in the
Basic Tutorial [https://github.com/westpa/westpa_tutorials/tree/main/basic_nacl].

	Parameters:

	
	top (str or mdtraj.Topology, default 'bstate.pdb')

	traj_ext (str, default '.dcd')

	state_ext (str, default '.xml')

	sim_root (str, default '.')

	
class westpa.analysis.trajectories.HDF5MDTrajectory

	Trajectory reader for MD trajectories stored by the HDF5 framework.

	
westpa.analysis.trajectories.concatenate(segments)

	Return the concatenation of a sequence of trajectory segments.

	Parameters:

	segments (sequence of sequences) – A sequence of trajectory segments.

	Returns:

	The concatenation of segments.

	Return type:

	sequence

westpa.analysis.statistics module

	
westpa.analysis.statistics.time_average(observable, iterations)

	Compute the time average of an observable.

	Parameters:

	
	observable (Callable[[Walker], ArrayLike]) – Function that takes a walker as input and returns a number or
a fixed-size array of numbers.

	iterations (Sequence[Iteration]) – Sequence of iterations over which to compute the average.

	Returns:

	The time average of observable over iterations.

	Return type:

	ArrayLike

HDF5 File Schema

WESTPA stores all of its simulation data in the cross-platform, self-describing
HDF5 [http://www.hdfgroup.org/HDF5] file format. This file format can be
read and written by a variety of languages and toolkits, including C/C++,
Fortran, Python, Java, and Matlab [http://www.mathworks.com/help/matlab/ref/hdf5read.html] so that analysis of
weighted ensemble simulations is not tied to using the WESTPA framework. HDF5
files are organized like a filesystem, where arbitrarily-nested groups (i.e.
directories) are used to organize datasets (i.e. files). The excellent HDFView [http://www.hdfgroup.org/hdf-java-html/hdfview/] program may be used to
explore WEST data files.

The canonical file format reference for a given version of the WEST code is
described in src/west/data_manager.py [https://github.com/westpa/westpa/blob/master/src/west/data_manager.py].

Overall structure

/
 #ibstates/
 index
 naming
 bstate_index
 bstate_pcoord
 istate_index
 istate_pcoord
 #tstates/
 index
 bin_topologies/
 index
 pickles
 iterations/
 iter_XXXXXXXX/\|iter_XXXXXXXX/
 auxdata/
 bin_target_counts
 ibstates/
 bstate_index
 bstate_pcoord
 istate_index
 istate_pcoord
 pcoord
 seg_index
 wtgraph
 ...
 summary

The root group (/)

The root of the WEST HDF5 file contains the following entries (where a
trailing “/” denotes a group):

	Name

	Type

	Description

	ibstates/

	Group

	Initial and basis states for this
simulation

	tstates/

	Group

	Target (recycling) states for this
simulation; may be empty

	bin_topologies/

	Group

	Data pertaining to the binning scheme
used in each iteration

	iterations/

	Group

	Iteration data

	summary

	Dataset (1-dimensional,
compound)

	Summary data by iteration

The iteration summary table (/summary)

	Field

	Description

	n_particles

	the total number of walkers in this iteration

	norm

	total probability, for stability monitoring

	min_bin_prob

	smallest probability contained in a bin

	max_bin_prob

	largest probability contained in a bin

	min_seg_prob

	smallest probability carried by a walker

	max_seg_prob

	largest probability carried by a walker

	cputime

	total CPU time (in seconds) spent on propagation for this
iteration

	walltime

	total wallclock time (in seconds) spent on this iteration

	binhash

	a hex string identifying the binning used in this iteration

Per iteration data (/iterations/iter_XXXXXXXX)

Data for each iteration is stored in its own group, named according to the
iteration number and zero-padded out to 8 digits, as in
/iterations/iter_00000001 for iteration 1. This is done solely for
convenience in dealing with the data in external utilities that sort output by
group name lexicographically. The field width is in fact configurable via the
iter_prec configuration entry under data section of the WESTPA
configuration file.

The HDF5 group for each iteration contains the following elements:

	Name

	Type

	Description

	auxdata/

	Group

	All user-defined auxiliary data0
sets

	bin_target_counts

	Dataset (1-dimensional)

	The per-bin target count for the
iteration

	ibstates/

	Group

	Initial and basis state data for
the iteration

	pcoord

	Dataset (3-dimensional)

	Progress coordinate data for the
iteration stored as a (num of
segments, pcoord_len, pcoord_ndim)
array

	seg_index

	Dataset (1-dimensional,
compound)

	Summary data for each segment

	wtgraph

	Dataset (1-dimensional)

	

The segment summary table (/iterations/iter_XXXXXXXX/seg_index)

	Field

	Description

	weight

	Segment weight

	parent_id

	Index of parent

	wtg_n_parents

	

	wtg_offset

	

	cputime

	Total cpu time required to run the segment

	walltime

	Total walltime required to run the segment

	endpoint_type

	

	status

	

Bin Topologies group (/bin_topologies)

Bin topologies used during a WE simulation are stored as a unique hash
identifier and a serialized BinMapper object in python pickle [http://docs.python.org/2/library/pickle.html] format. This group contains
two datasets:

	index: Compound array containing the bin hash and pickle length

	pickle: The pickled BinMapper objects for each unique mapper stored
in a (num unique mappers, max pickled size) array

Overview

Style Guide

Preface

The WESTPA documentation should help the user to understand how WESTPA works
and how to use it. To aid in effective communication, a number of guidelines
appear below.

When writing in the WESTPA documentation, please be:

	Correct

	Clear

	Consistent

	Concise

Articles in this documentation should follow the guidelines on this page.
However, there may be cases when following these guidelines will make an
article confusing: when in doubt, use your best judgment and ask for the
opinions of those around you.

Style and Usage

Acronyms and abbreviations

	Software documentation often involves extensive use of acronyms and
abbreviations.

Acronym: A word formed from the initial letter or letters of each or most of
the parts of a compound term

Abbreviation: A shortened form of a written word or name that is used in
place of the full word or name

	Define non-standard acronyms and abbreviations on their first use by using
the full-length term, followed by the acronym or abbreviation in parentheses.

A potential of mean force (PMF) diagram may aid the user in visuallizing the
energy landscape of the simulation.

	Only use acronyms and abbreviations when they make an idea more clear than
spelling out the full term. Consider clarity from the point of view of a new
user who is intelligent but may have little experience with computers.

Correct: The WESTPA wiki supports HyperText Markup Language (HTML). For
example, the user may use HTML tags to give text special formatting. However,
be sure to test that the HTML tag gives the desired effect by previewing
edits before saving.

Avoid: The WESTPA wiki supports HyperText Markup Language. For example, the
user may use HyperText Markup Language tags to give text special formatting.
However, be sure to test that the HyperText Markup Language tag gives the
desired effect by previewing edits before saving.

Avoid: For each iter, make sure to return the pcoord and any auxdata.

	Use all capital letters for abbreviating file types. File extensions should
be lowercase.

HDF5, PNG, MP4, GRO, XTC

west.h5, bound.png, unfolding.mp4, protein.gro, segment.xtc

	Provide pronunciations for acronyms that may be difficult to sound out.

	Do not use periods in acronyms and abbreviations except where it is
customary:

Correct: HTML, U.S.

Avoid: H.T.M.L., US

Capitalization

	Capitalize at the beginning of each sentence.

	Do not capitalize after a semicolon.

	Do not capitalize after a colon, unless multiple sentences follow the colon.

	In this case, capitalize each sentence.

	Preserve the capitalization of computer language elements (commands,

	utilities, variables, modules, classes, and arguments).

	Capitilize generic Python variables according to the

	PEP 0008 Python Style Guide [http://www.python.org/dev/peps/pep-0008/#class-names]. For example,
generic class names should follow the CapWords convention, such as
GenericClass.

Contractions

	Do not use contractions. Contractions are a shortened version of word
characterized by the omission of internal letters.

Avoid: can’t, don’t, shouldn’t

	Possessive nouns are not contractions. Use possessive nouns freely.

Internationalization

	Use short sentences (less than 25 words). Although we do not maintain
WESTPA documentation in languages other than English, some users may use
automatic translation programs. These programs function best with short
sentences.

	Do not use technical terms where a common term would be equally or more
clear.

	Use multiple simple sentences in place of a single complicated sentence.

Italics

	Use italics (surround the word with * * on each side) to highlight words
that are not part of a sentence’s normal grammer.

Correct: The word istates refers to the initial states that WESTPA uses to
begin trajectories.

Non-English words

	Avoid Latin words and abbreviations.

Avoid: etc., et cetera, e.g., i.e.

Specially formatted characters

	Never begin a sentence with a specially formatted character. This includes
abbreviations, variable names, and anything else this guide instructs to use
with special tags. Sentences may begin with WESTPA.

Correct: The program ls allows the user to see the contents of a
directory.

Avoid: ls allows the user to see the contents of a directory.

	Use the word and rather than an & ampersand .

	When a special character has a unique meaning to a program, first use the
character surrounded by `` tags and then spell it out.

Correct: Append an & ampersand to a command to let it run in the
background.

Avoid: Append an “&” to a command… Append an & to a command… Append
an ampersand to a command…

	There are many names for the # hash mark, including hash tag, number
sign, pound sign, and octothorpe. Refer to this symbol as a “hash mark”.

Subject

	Refer to the end WESTPA user as the user in software documentation.

Correct: The user should use the processes work manager to run segments
in parallel on a single node.

	Refer to the end WESTPA user as you in tutorials (you is the implied
subject of commands). It is also acceptable to use personal pronouns such as
we and our. Be consistent within the tutorial.

Correct: You should have two files in this directory, named system.py and
west.cfg.

Tense

	Use should to specify proper usage.

Correct: The user should run w_truncate -n <var>iter</var> to remove
iterations after and including iter from the HDF5 file specified in the
WESTPA configuration file.

	Use will to specify expected results and output.

Correct: WESTPA will create a HDF5 file when the user runs w_init.

Voice

	Use active voice. Passive voice can obscure a sentence and add unnecessary
words.

Correct: WESTPA will return an error if the sum of the weights of segments
does not equal one.

Avoid: An error will be returned if the sum of the weights of segments does
not equal one.

Weighted ensemble

	Refer to weighted ensemble in all lowercase, unless at the beginning of a
sentence. Do not hyphenate.

Correct: WESTPA is an implementation of the weighted ensemble algorithm.

Avoid: WESTPA is an implementation of the weighted-ensemble algorithm.

Avoid: WESTPA is an implementation of the Weighted Ensemble algorithm.

WESTPA

	Refer to WESTPA in all capitals. Do not use bold, italics, or other special
formatting except when another guideline from this style guide applies.

Correct: Install the WESTPA software package.

	The word WESTPA may refer to the software package or a entity of running
software.

Correct: WESTPA includes a number of analysis utilities.

Correct: WESTPA will return an error if the user does not supply a
configuration file.

Computer Language Elements

Classes, modules, and libraries

	Display class names in fixed-width font using the `` tag.

Correct: WESTPropagator

Correct: The numpy library provides access to various low-level
mathematical and scientific calculation routines.

	Generic class names should be relevant to the properties of the class; do not
use foo or bar

class UserDefinedBinMapper(RectilinearBinMapper)

Methods and commands

	Refer to a method by its name without parentheses, and without prepending
the name of its class. Display methods in fixed-width font using the ``
tag.

Correct: the arange method of the numpy library

Avoid: the arange() method of the numpy library

Avoid: the numpy.arange method

	When referring to the arguments that a method expects, mention the method
without arguments first, and then use the method’s name followed by
parenthesis and arguments.

Correct: WESTPA calls the assign method as assign(coords, mask=None,
output=None)

	Never use a method or command as a verb.

Correct: Run cd to change the current working directory.

Avoid: cd into the main simulation directory.

Programming languages

	Some programming languages are both a language and a command. When referring
to the language, capitalize the word and use standard font. When referring
to the command, preserve capitalization as it would appear in a terminal and
use the `` tag.

Using WESTPA requires some knowledge of Python.

Run python to launch an interactive session.

The Bash shell provides some handy capabilities, such as wildcard matching.

Use bash to run example.sh.

Scripts

	Use the .. code-block:: directive for short scripts. Options are
available for some languages, such as .. code-block:: bash and
.. code-block:: python.

#!/bin/bash
This is a generic Bash script.

BASHVAR="Hello, world!"
echo $BASHVAR

#!/usr/bin/env python
This is a generic Python script.

def main():
 pythonstr = "Hello, world!"
 print(pythonstr)
 return
if __name__ == "__main__":
 main()

	Begin a code snippet with a #! shebang (yes, this is the real term),
followed by the usual path to a program. The line after the shebang should be
an ellipsis, followed by lines of code. Use #!/bin/bash for Bash scripts,
#!/bin/sh for generic shell scripts, and #!/usr/bin/env python for
Python scripts. For Python code snippets that are not a stand-alone script,
place any import commands between the shebang line and ellipsis.

#!/usr/bin/env python
import numpy
...
def some_function(generic_vals):
 return 1 + numpy.mean(generic_vals)

	Follow the PEP 0008 Python Style Guide [http://www.python.org/dev/peps/pep-0008/#class-names] for Python scripts.

	Indents are four spaces.

	For comments, use the # hash mark followed by a single space, and
then the comment’s text.

	Break lines after 80 characters.

	For Bash scripts, consider following Google’s Shell Style Guide [https://google-styleguide.googlecode.com/svn/trunk/shell.xml]

	Indents are two spaces.

	Use blank lines to improve readability

	Use ; do and ; then on the same line as while, for, and
if.

	Break lines after 80 characters.

	For other languages, consider following a logical style guide. At minimum, be
consistent.

Variables

	Use the fixed-width `` tag when referring to a variable.

the ndim attribute

	When explicitly referring to an attribute as well as its class, refer to an
attribute as: the attr attribute of GenericClass, rather than
GenericClass.attr

	Use the $ dollar sign before Bash variables.

WESTPA makes the variable $WEST_BSTATE_DATA_REF available to new
trajectories.

Source Code Management

Documentation Practices

Introduction to Editing the Sphinx Documentation

Documentation for WESTPA is maintained using Sphinx [https://sphinx-doc.org/].
Docstrings are formatted in the Numpy style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt],
which are converted to ReStructuredText using Sphinx’ Napoleon [http://sphinxcontrib-napoleon.readthedocs.org/en/latest/] plugin, a feature included with Sphinx.

Make sure sphinx and sphinx_rtd_theme are installed on the system. The settings for the documentation
are specified in /westpa/doc/conf.py. In order to successfully build the documentation, your system
has to statisfy the minimum environment to install WESTPA.

The documentation may be built locally in the _build folder by navigating to the doc folder, and
running:

make html

to prepare an html version or:

make latexpdf

To prepare a pdf. The latter requires latex to be available.

Uploading to ReadTheDocs

The online copy of WESTPA Sphinx documentation is hosted on ReadtheDocs [https://readthedocs.org].
The Sphinx documentations on the main branch are updated whenever the main branch is updated, via a
webhook setup on ReadtheDocs and /westpa/.readthedocs.yml. The environment used to build the documentation
on the RTD servers are described in /westpa/doc/doc_env.yaml.

In Cases of Major Revisions in Code Base

Currently, each .rst file contains pre-written descriptions and autogenerated sections generated
from docstrings via automodule. In cases where the WESTPA code base has significantly changed,
the structure of the code base can be regenerated into the test folder by running the
following command in the doc folder:

sphinx-apidoc -f -o test ../src/westpa

WESTPA Modules API

Binning

Bin assignment for WEST simulations. This module defines “bin mappers” which take
vectors of coordinates (or rather, coordinate tuples), and assign each a definite
integer value identifying a bin. Critical portions are implemented in a Cython
extension module.

A number of pre-defined bin mappers are available here:

	RectilinearBinMapper, for bins divided by N-dimensional grids

	FuncBinMapper, for functions which directly calculate bin assignments
for a number of coordinate values. This is best used with C/Cython/Numba
functions, or intellegently-tuned numpy-based Python functions.

	VectorizingFuncBinMapper, for functions which calculate a bin
assignment for a single coordinate value. This is best used for arbitrary
Python functions.

	PiecewiseBinMapper, for using a set of boolean-valued functions, one
per bin, to determine assignments. This is likely to be much slower than a
FuncBinMapper or VectorizingFuncBinMapper equipped with an appropriate
function, and its use is discouraged.

One “super-mapper” is available, for assembling more complex bin spaces from
simpler components:

	RecursiveBinMapper, for nesting one set of bins within another.

Users are also free to implement their own mappers. A bin mapper must implement, at
least, an assign(coords, mask=None, output=None) method, which is responsible
for mapping each of the vector of coordinate tuples coords to an integer
(np.uint16) indicating a what bin that coordinate tuple falls into. The optional
mask (a numpy bool array) specifies that some coordinates are to be skipped; this is used,
for instance, by the recursive (nested) bin mapper to minimize the number of calculations
required to definitively assign a coordinate tuple to a bin. Similarly, the optional
output must be an integer (uint16) array of the same length as coords, into which
assignments are written. The assign() function must return a reference to output.
(This is used to avoid allocating many temporary output arrays in complex binning
scenarios.)

A user-defined bin mapper must also make an nbins property available, containing
the total number of bins within the mapper.

YAMLCFG

YAML-based configuration files for WESTPA

RC

	
class westpa.core._rc.WESTRC

	A class, an instance of which is accessible as westpa.rc, to handle global issues for WEST-PA code,
such as loading modules and plugins, writing output based on verbosity level, adding default command line options,
and so on.

WESTPA Tools

WEST

	 Setup
	Defining and Calculating Progress Coordinates

	Binning

	Initial/Basis States

	Target States

	Propagators

	Configuration File

	Environmental Variables

	Plugins

	Weighted Ensemble Algorithm (Resampling)

	 Running
	Overview

	Setting simulation limits

	Running a simulation

	Managing data

	Recovering from errors

	 Analysis
	Gauging simulation progress and convergence

Setup

Defining and Calculating Progress Coordinates

Binning

The Weighted Ensemble method enhances sampling by partitioning the space
defined by the progress coordinates into non-overlapping bins. WESTPA provides
a number of pre-defined types of bins that the user must parameterize within
the system.py file, which are detailed below.

Users are also free to implement their own mappers. A bin mapper must
implement, at least, an assign(coords, mask=None, output=None) method,
which is responsible for mapping each of the vector of coordinate tuples
coords to an integer (numpy.uint16) indicating what bin that coordinate
tuple falls into. The optional mask (a numpy bool array) specifies that
some coordinates are to be skipped; this is used, for instance, by the
recursive (nested) bin mapper to minimize the number of calculations required
to definitively assign a coordinate tuple to a bin. Similarly, the optional
output must be an integer (uint16) array of the same length as
coords, into which assignments are written. The assign() function must
return a reference to output. (This is used to avoid allocating many
temporary output arrays in complex binning scenarios.)

A user-defined bin mapper must also make an nbins property available,
containing the total number of bins within the mapper.

RectilinearBinMapper

Creates an N-dimensional grid of bins. The Rectilinear bin mapper is
initialized by defining a set of bin boundaries:

self.bin_mapper = RectilinearBinMapper(boundaries)

where boundaries is a list or other iterable containing the bin boundaries
along each dimension. The bin boundaries must be monotonically increasing along
each dimension. It is important to note that a one-dimensional bin space must
still be represented as a list of lists as in the following example::

bounds = [-float('inf'), 0.0, 1.0, 2.0, 3.0, float('inf')]
self.bin_mapper = RectilinearBinMapper([bounds])

A two-dimensional system might look like::

boundaries = [(-1,-0.5,0,0.5,1), (-1,-0.5,0,0.5,1)]
self.bin_mapper = RectilinearBinMapper(boundaries)

where the first tuple in the list defines the boundaries along the first
progress coordinate, and the second tuple defines the boundaries along the
second. Of course a list of arbitrary dimensions can be defined to create an
N-dimensional grid discretizing the progress coordinate space.

VoronoiBinMapper

A one-dimensional mapper which assigns a multidimensional progress coordinate
to the closest center based on a distance metric. The Voronoi bin mapper is
initialized with the following signature within the
WESTSystem.initialize::

self.bin_mapper = VoronoiBinMapper(dfunc, centers, dfargs=None, dfkwargs=None)

	centers is a (n_centers, pcoord_ndim) shaped numpy array defining
the generators of the Voronoi cells

	dfunc is a method written in Python that returns an (n_centers,)
shaped array containing the distance between a single set of progress
coordinates for a segment and all of the centers defining the Voronoi
tessellation. It takes the general form::

def dfunc(p, centers, *dfargs, **dfkwargs):
 ...
 return d

where p is the progress coordinates of a single segment at one time slice
of shape (pcoord_ndim,), centers is the full set of centers, dfargs
is a tuple or list of positional arguments and dfwargs is a dictionary of
keyword arguments. The bin mapper’s assign method then assigns the progress
coordinates to the closest bin (minimum distance). It is the responsibility of
the user to ensure that the distance is calculated using the appropriate
metric.

	dfargs is an optional list or tuple of positional arguments to pass into
dfunc.

	dfkwargs is an optional dict of keyword arguments to pass into dfunc.

FuncBinMapper

A bin mapper that employs a set of user-defined function, which directly
calculate bin assignments for a number of coordinate values. The function is
responsible for iterating over the entire coordinate set. This is best used
with C/Cython/Numba methods, or intellegently-tuned numpy-based Python
functions.

The FuncBinMapper is initialized as::

self.bin_mapper = FuncBinMapper(func, nbins, args=None, kwargs=None)

where func is the user-defined method to assign coordinates to bins,
nbins is the number of bins in the partitioning space, and args and
kwargs are optional positional and keyword arguments, respectively, that
are passed into func when it is called.

The user-defined function should have the following form::

def func(coords, mask, output, *args, **kwargs)

where the assignments returned in the output array, which is modified
in-place.

As a contrived example, the following function would assign all segments to bin
0 if the sum of the first two progress coordinates was less than s*0.5, and
to bin 1 otherwise, where s=1.5::

def func(coords, mask, output, s):
 output[coords[:,0] + coords[:,1] < s*0.5] = 0
 output[coords[:,0] + coords[:,1] >= s*0.5] = 1

....

self.bin_mapper = FuncBinMapper(func, 2, args=(1.5,))

VectorizingFuncBinMapper

Like the FuncBinMapper, the VectorizingFuncBinMapper uses a
user-defined method to calculate bin assignments. They differ, however, in that
while the user-defined method passed to an instance of the FuncBinMapper is
responsible for iterating over all coordinate sets passed to it, the function
associated with the VectorizingFuncBinMapper is evaluated once for each
unmasked coordinate tuple provided. It is not responsible explicitly for
iterating over multiple progress coordinate sets.

The VectorizingFuncBinMapper is initialized as::

self.bin_mapper = VectorizingFuncBinMapper(func, nbins, args=None, kwargs=None)

where func is the user-defined method to assign coordinates to bins,
nbins is the number of bins in the partitioning space, and args and
kwargs are optional positional and keyword arguments, respectively, that
are passed into func when it is called.

The user-defined function should have the following form::

def func(coords, *args, **kwargs)

Mirroring the simple example shown for the FuncBinMapper, the following
should result in the same result for a given set of coordinates. Here segments
would be assigned to bin 0 if the sum of the first two progress coordinates was
less than s*0.5, and to bin 1 otherwise, where s=1.5::

def func(coords, s):
 if coords[0] + coords[1] < s*0.5:
 return 0
 else:
 return 1
....

self.bin_mapper = VectorizingFuncBinMapper(func, 2, args=(1.5,))

PiecewiseBinMapper

RecursiveBinMapper

The RecursiveBinMapper is used for assembling more complex bin spaces from
simpler components and nesting one set of bins within another. It is
initialized as::

self.bin_mapper = RecursiveBinMapper(base_mapper, start_index=0)

The base_mapper is an instance of one of the other bin mappers, and
start_index is an (optional) offset for indexing the bins. Starting with
the base_mapper, additional bins can be nested into it using the
add_mapper(mapper, replaces_bin_at). This method will replace the bin
containing the coordinate tuple replaces_bin_at with the mapper specified
by mapper.

As a simple example consider a bin space in which the base_mapper assigns a
segment with progress coordinate with values <1 into one bin and >= 1 into
another. Within the former bin, we will nest a second mapper which partitions
progress coordinate space into one bin for progress coordinate values <0.5 and
another for progress coordinates with values >=0.5. The bin space would look
like the following with corresponding code::

'''
 0 1 2
 +----------------------------+----------------------+
 | 0.5 | | | | |
 | +-----------+------------+ | |
 | | | | | |
 | | 1 | 2 | | 0 |
 | | | | | |
 | | | | | |
 | +-----------+------------+ | |prettyprint
 +---+
'''

def fn1(coords, mask, output):
 test = coords[:,0] < 1
 output[mask & test] = 0
 output[mask & ~test] = 1

def fn2(coords, mask, output):
 test = coords[:,0] < 0.5
 output[mask & test] = 0
 output[mask & ~test] = 1

outer_mapper = FuncBinMapper(fn1,2)
inner_mapper = FuncBinMapper(fn2,2)
rmapper = RecursiveBinMapper(outer_mapper)
rmapper.add_mapper(inner_mapper, [0.5])

Examples of more complicated nesting schemes can be found in the tests [https://github.com/westpa/westpa/blob/master/lib/west_tools/tests/testbinning.py]
for the WESTPA binning apparatus.

Initial/Basis States

A WESTPA simulation is initialized using w_init with an initial
distribution of replicas generated from a set of basis states. These basis
states are used to generate initial states for new trajectories, either at the
beginning of the simulation or due to recycling. Basis states are specified
when running w_init either in a file specified with --bstates-from, or
by one or more --bstate arguments. If neither --bstates-from nor at
least one --bstate argument is provided, then a default basis state of
probability one identified by the state ID zero and label “basis” will be
created (a warning will be printed in this case, to remind you of this
behavior, in case it is not what you wanted).

When using a file passed to w_init using --bstates-from, each line in
that file defines a state, and contains a label, the probability, and
optionally a data reference, separated by whitespace, as in::

unbound 1.0

or:

unbound_0 0.6 state0.pdb
unbound_1 0.4 state1.pdb

Basis states can also be supplied at the command line using one or more
--bstate flags, where the argument matches the format used in the state
file above. The total probability summed over all basis states should equal
unity, however WESTPA will renormalize the distribution if this condition is
not met.

Initial states are the generated from the basis states by optionally applying
some perturbation or modification to the basis state. For example if WESTPA was
being used to simulate ligand binding, one might want to have a basis state
where the ligand was some set distance from the binding partner, and initial
states are generated by randomly orienting the ligand at that distance. When
using the executable propagator, this is done using the script specified under
the gen_istate section of the executable configuration. Otherwise, if
defining a custom propagator, the user must override the gen_istate method
of WESTPropagator.

When using the executable propagator, the the script specified by
gen_istate should take the data supplied by the environmental variable
$WEST_BSTATE_DATA_REF and return the generated initial state to
$WEST_ISTATE_DATA_REF. If no transform need be performed, the user may
simply copy the data directly without modification. This data will then be
available via $WEST_PARENT_DATA_REF if $WEST_CURRENT_SEG_INITPOINT_TYPE
is SEG_INITPOINT_NEWTRAJ.

Target States

WESTPA can be run in a recycling mode in which replicas reaching a target state
are removed from the simulation and their weights are assigned to new replicas
created from one of the initial states. This mode creates a non-equilibrium
steady-state that isolates members of the trajectory ensemble originating in
the set of initial states and transitioning to the target states. The flux of
probability into the target state is then inversely proportional to the mean
first passage time (MFPT) of the transition.

Target states are defined when initializing a WESTPA simulation when calling
w_init. Target states are specified either in a file specified with
--tstates-from, or by one or more --tstate arguments. If neither
--tstates-from nor at least one --tstate argument is provided, then an
equilibrium simulation (without any sinks) will be performed.

Target states can be defined using a text file, where each line defines a
state, and contains a label followed by a representative progress coordinate
value, separated by whitespace, as in::

bound 0.02

for a single target and one-dimensional progress coordinates or::

bound 2.7 0.0
drift 100 50.0

for two targets and a two-dimensional progress coordinate.

The argument associated with --tstate is a string of the form 'label,
pcoord0 [,pcoord1[,...]]', similar to a line in the example target state
definition file above. This argument may be specified more than once, in which
case the given states are appended to the list of target states for the
simulation in the order they appear on the command line, after those that are
specified by --tstates-from, if any.

WESTPA uses the representative progress coordinate of a target-state and
converts the entire bin containing that progress coordinate into a
recycling sink.

Propagators

The Executable Propagator

Writing custom propagators

While most users will use the Executable propagator to run dynamics by calling
out to an external piece of software, it is possible to write custom
propagators that can be used to generate sampling directly through the python
interface. This is particularly useful when simulating simple systems, where
the overhead of starting up an external program is large compared to the actual
cost of computing the trajectory segment. Other use cases might include running
sampling with software that has a Python API (e.g. OpenMM [https://simtk.org/home/openmm]).

In order to create a custom propagator, users must define a class that inherits
from WESTPropagator and implement three methods:

	get_pcoord(self, state): Get the progress coordinate of the given basis
or initial state.

	gen_istate(self, basis_state, initial_state): Generate a new initial
state from the given basis state. This method is optional if gen_istates
is set to False in the propagation section of the configuration file,
which is the default setting.

	propagate(self, segments): Propagate one or more segments, including any
necessary per-iteration setup and teardown for this propagator.

There are also two stubs that that, if overridden, provide a mechanism for
modifying the simulation before or after the iteration:

	prepare_iteration(self, n_iter, segments): Perform any necessary
per-iteration preparation. This is run by the work manager.

	finalize_iteration(self, n_iter, segments): Perform any necessary
post-iteration cleanup. This is run by the work manager.

Several examples of custom propagators are available:

	1D Over-damped Langevin dynamics [https://github.com/westpa/westpa/blob/master/lib/examples/odld/odld_system.py]

	2D Langevin dynamics [https://bitbucket.org/joshua.adelman/stringmethodexamples/src/tip/examples/DicksonRingPotential/we_base/system.py]

	Langevin dynamics - CA atom Elastic Network Model [https://bitbucket.org/joshua.adelman/stringmethodexamples/src/tip/examples/ElasticNetworkModel/we_base/system.py]

Configuration File

The configuration of a WESTPA simulation is specified using a plain text file
written in YAML [http://en.wikipedia.org/wiki/YAML]. This file specifies,
among many other things, the length of the simulation, which modules should be
loaded for specifying the system, how external data should be organized on the
file system, and which plugins should used. YAML is a hierarchical format and
WESTPA organizes the configuration settings into blocks for each component.
While below, the configuration file will be referred to as west.cfg, the
user is free to name the configuration file something else. Most of the scripts
and tools that WESTPA provides, however, require that the name of the
configuration file be specified if the default name is not used.

The top most heading in west.cfg should be specified as::

west:
 ...

with all sub-section specified below it. A complete example can be found for
the NaCl example:
https://github.com/westpa/westpa/blob/master/lib/examples/nacl_gmx/west.cfg

In the following section, the specifications for each section of the file can
be found, along with default parameters and descriptions. Required parameters
are indicated as REQUIRED.:

west:
 ...
 system:
 driver: REQUIRED
 module_path: []

The driver parameter must be set to a subclass of WESTSystem, and given
in the form module.class. The module_path parameter is appended to the
system path and indicates where the class is defined.:

west:
 ...
 we:
 adjust_counts: True
 weight_split_threshold: 2.0
 weight_merge_cutoff: 1.0

The we section section specifies parameters related to the Huber and Kim
resampling algorithm. WESTPA implements a variation of the method, in which
setting adust_counts to True strictly enforces that the number of
replicas per bin is exactly system.bin_target_counts. Otherwise, the number
of replicas per is allowed to fluctuate as in the original implementation of
the algorithm. Adjusting the counts can improve load balancing for parallel
simulations. Replicas with weights greater than weight_split_threshold
times the ideal weight per bin are tagged as candidates for splitting. Replicas
with weights less than weight_merge_cutoff times the ideal weight per bin
are candidates for merging.:

west:
 ...
 propagation:
 gen_istates: False
 block_size: 1
 save_transition_matrices: False
 max_run_wallclock: None
 max_total_iterations: None

	gen_istates: Boolean specifying whether to generate initial states from
the basis states. The executable propagator defines a specific configuration
block (add internal link to other section), and custom propagators should
override the WESTPropagator.gen_istate() method.

	block_size: An integer defining how many segments should be passed to a
worker at a time. When using the serial work manager, this value should be
set to the maximum number of segments per iteration to avoid significant
overhead incurred by the locking mechanism in the WMFutures framework.
Parallel work managers might benefit from setting this value greater than one
in some instances to decrease network communication load.

	save_transition_matrices:

	max_run_wallclock: A time in dd:hh:mm:ss or hh:mm:ss specifying the
maximum wallclock time of a particular WESTPA run. If running on a batch
queuing system, this time should be set to less than the job allocation time
to ensure that WESTPA shuts down cleanly.

	max_total_iterations: An integer value specifying the number of
iterations to run. This parameter is checked against the last completed
iteration stored in the HDF5 file, not the number of iterations completed for
a specific run. The default value of None only stops upon external
termination of the code.:

west:
 ...
 data:
 west_data_file: REQUIRED
 aux_compression_threshold: 1048576
 iter_prec: 8
 datasets:
 -name: REQUIRED
 h5path:
 store: True
 load: False
 dtype:
 scaleoffset: None
 compression: None
 chunks: None
 data_refs:
 segment:
 basis_state:
 initial_state:

	west_data_file: The name of the main HDF5 data storage file for the
WESTPA simulation.

	aux_compression_threshold: The threshold in bytes for compressing the
auxiliary data in a dataset on an iteration-by-iteration basis.

	iter_prec: The length of the iteration index with zero-padding. For the
default value, iteration 1 would be specified as iter_00000001.

	datasets:

	data_refs:

	plugins

	executable

Environmental Variables

There are a number of environmental variables that can be set by the user in
order to configure a WESTPA simulation:

	WEST_ROOT: path to the base directory containing the WESTPA install

	WEST_SIM_ROOT: path to the base directory of the WESTPA simulation

	WEST_PYTHON: path to python executable to run the WESTPA simulation

	WEST_PYTHONPATH: path to any additional modules that WESTPA will require to
run the simulation

	WEST_KERNPROF: path to kernprof.py script to perform line-by-line
profiling of a WESTPA simulation (see python line_profiler [http://pythonhosted.org/line_profiler]). This is only required for users
who need to profile specific methods in a running WESTPA simulation.

Work manager related environmental variables:

	WM_WORK_MANAGER

	WM_N_WORKERS

WESTPA makes available to any script executed by it (e.g. runseg.sh), a
number of environmental variables that are set dynamically by the executable
propagator from the running simulation.

Programs executed for an iteration

The following environment variables are passed to programs executed on a
per-iteration basis, notably pre-iteration and post-iteration scripts.

	Variable

	Possible values

	Function

	WEST_CURRENT_ITER

	Integer >=1

	Current iteration number

Programs executed for a segment

The following environment variables are passed to programs executed on a
per-segment basis, notably dynamics propagation.

	Variable

	Possible values

	Function

	WEST_CURRENT_ITER

	Integer >=1

	Current iteration
number

	WEST_CURRENT_SEG_ID

	Integer >=0

	Current segment ID

	WEST_CURRENT_SEG_DATA_REF

	String

	General-purpose
reference, based on
current segment
information,
configured in
west.cfg. Usually
used for storage
paths

	WEST_CURRENT_SEG_INITPOINT_TYPE

	Enumeration:
SEG_INITPOINT_CONTINUES,
SEG_INITPOINT_NEWTRAJ

	Whether this
segment continues a
previous trajectory
or initiates a new
one.

	WEST_PARENT_ID

	Integer

	Segment ID of
parent segment.
Negative for
initial points.

	WEST_PARENT_DATA_REF

	String

	General purpose
reference, based on
parent segment
information,
configured in
west.cfg. Usually
used for storage
paths

	WEST_PCOORD_RETURN

	Filename

	Where progress
coordinate data
must be stored

	WEST_RAND16

	Integer

	16-bit random
integer

	WEST_RAND32

	Integer

	32-bit random
integer

	WEST_RAND64

	Integer

	64-bit random
integer

	WEST_RAND128

	Integer

	128-bit random
integer

	WEST_RANDFLOAT

	Floating-point

	Random number in
[0,1).

Additionally for any additional datasets specified in the configuration file,
WESTPA automatically provides WEST_X_RETURN, where X is the uppercase
name of the dataset. For example if the configuration file contains the
following:

data:
 ...
 datasets: # dataset storage options
 - name: energy

WESTPA would make WEST_ENERGY_RETURN available.

Programs executed for a single point

Programs used for creating initial states from basis states (gen_istate.sh)
or extracting progress coordinates from structures (e.g. get_pcoord.sh) are
provided the following environment variables:

	Variable

	Available for

	Possible values

	Function

	WEST_STRUCT_DATA_REF

	All
single-point
calculations

	String

	General-purpose
reference, usually a
pathname, associated
with the basis/initial
state.

	WEST_BSTATE_ID

	get_pcoord for
basis state,
gen_istate

	Integer >= 0

	Basis state ID

	WEST_BSTATE_DATA_REF

	get_pcoord for
basis state,
gen_istate

	String

	Basis state data
reference

	WEST_ISTATE_ID

	get_pcoord for
initial state,
gen_istate

	Integer >= 0

	Inital state ID

	WEST_ISTATE_DATA_REF

	get_pcoord for
initial state,
gen_istate

	String

	Initial state data
references, usually a
pathname

	WEST_PCOORD_RETURN

	get_pcoord for
basis or
initial state

	Pathname

	Where progress
coordinate data is
expected to be found
after execution

Plugins

WESTPA has a extensible plugin architecture that allows the user to manipulate
the simulation at specified points during an iteration.

	Activating plugins in the config file

	Plugin execution order/priority

Weighted Ensemble Algorithm (Resampling)

Running

Overview

The w_run command is used to run weighted ensemble simulations
configured <setup> with w_init.

Setting simulation limits

Running a simulation

Running on a single node

Running on multiple nodes with MPI

Running on multiple nodes with ZeroMQ

Managing data

Recovering from errors

By default, information about simulation progress is stored in
west-JOBID.log (where JOBID refers to the job ID given by the submission
engine); any errors will be logged here.

	The error “could not read pcoord from ‘tempfile’: progress coordinate has
incorrect shape” may come about from multiple causes; it is possible that the
progress coordinate length is incorrectly specified in system.py
(self.pcoord_len), or that GROMACS (or whatever simulation package you
are using) had an error during the simulation.

	The first case will be obvious by what comes after the message: (XX, YY)
(where XX is non-zero), expected (ZZ, GG) (whatever is in system.py). This
can be corrected by adjusting system.py.

	In the second case, the progress coordinate length is 0; this
indicates that no progress coordinate data exists (null string), which
implies that the simulation software did not complete successfully. By
default, the simulation package (GROMACS or otherwise) terminal output is
stored in a log file inside of seg_logs. Any error that occurred during the
actual simulation will be logged here, and can be corrected as needed.

Analysis

Gauging simulation progress and convergence

Progress coordinate distribution (w_pcpdist)

w_pcpdist and plothist

Kinetics for source/sink simulations

w_fluxanl

Kinetics for arbitrary state definitions

In order to calculate rate constants, it is necessary to run three different
tools:

- :ref:`w_assign`
- :ref:`w_kinetics`
- :ref:`w_kinavg`

The w_assign tool assigns trajectories to states (states which correspond to a
target bin) at a sub-tau resolution. This allows w_kinetics to properly trace
the trajectories and prepare the data for further analysis.

Although the bin and state definitions can be pulled from the system, it is
frequently more convenient to specify custom bin boundaries and states; this
eliminates the need to know what constitutes a state prior to starting the
simulation. Both files must be in the YAML format, of which there are numerous
examples of online. A quick example for each file follows:

States:

states:
 - label: unbound
 coords:
 - [25,0]
 - label: boun
 coords:
 - [1.5,33.0]

Bins:

bins:
 type: RectilinearBinMapper
 boundaries: [[0.0,1.57,25.0,10000],[0.0,33.0,10000]]

This system has a two dimensional progress coordinate, and two definite states,
as defined by the PMF. The binning used during the simulation was significantly
more complex; defining a smaller progress coordinate (in which we have three
regions: bound, unbound, and in between) is simply a matter of convenience.
Note that these custom bins do not change the simulation in any fashion; you
can adjust state definitions and bin boundaries at will without altering the
way the simulation runs.

The help definition, included by running:

w_assign --help

usually contains the most up-to-date help information, and so more
information about command line options can be obtained from there. To
run with the above YAML files, assuming they are named STATES and BINS,
you would run the following command:

w_assign --states-from-file STATES --bins-from-file BINS

By default, this produces a .h5 file (named assign.h5); this can be changed via
the command line.

The w_kinetics tool uses the information generated from w_assign to trace
through trajectories and calculate flux with included color information. There
are two main methods to run w_kinetics:

w_kinetics trace
w_kinetics matrix

The matrix method is still in development; at this time, trace is the
recommended method.

Once the w_kinetics analysis is complete, you can check for convergence of the
rate constants. WESTPA includes two tools to help you do this: w_kinavg and
ploterr. First, begin by running the following command (keep in mind that
w_kinavg has the same type of analysis as w_kinetics does; whatever method you
chose (trace or matrix) in the w_kinetics step should be used here, as well):

w_kinavg trace -e cumulative

This instructs w_kinavg to produce a .h5 file with the cumulative rate
information; by then using ploterr, you can determine whether the rates
have stopped changing:

ploterr kinavg

By default, this produces a set of .pdf files, containing cumulative rate and
flux information for each state-to-state transition as a function of the WESTPA
iteration. Determine at which iteration the rate stops changing; then, rerun
w_kinavg with the following systems:

w_kinavg trace --first-iter ITER

where ITER is the beginning of the unchanging region. This will then
output information much like the following:

fluxes into macrostates:
unbound: mean=1.712580005863456e-02 CI=(1.596595628304422e-02, 1.808249529394858e-02) * tau^-1
bound : mean=5.944989301935855e-04 CI=(4.153556214886056e-04, 7.789568983584020e-04) * tau^-1

fluxes from state to state:
unbound -> bound : mean=5.944989301935855e-04 CI=(4.253003401668849e-04, 7.720997503648696e-04) * tau^-1
bound -> unbound: mean=1.712580005863456e-02 CI=(1.590547796439216e-02, 1.808154616175579e-02) * tau^-1

rates from state to state:
unbound -> bound : mean=9.972502012305491e-03 CI=(7.165030136921814e-03, 1.313767180582492e-02) * tau^-1
bound -> unbound: mean=1.819520888349874e-02 CI=(1.704608273094848e-02, 1.926165865735958e-02) * tau^-1

Divide by tau to calculate your rate constant.

WEST Tools

The command line tools included with the WESTPA software package are broadly
separable into two categories: Tools for initializing a simulation and
tools for analyzing results.

Command function can be user defined and modified. The particular parameters of
different command line tools are specified, in order of precedence, by:

	User specified command line arguments

	User defined environmental variables

	Package defaults

This page focuses on outlining the general functionality of the command line
tools and providing an overview of command line arguments that are shared by
multiple tools. See the index of command-line tools for a more comprehensive overview of each tool.

Overview

All tools are located in the $WEST_ROOT/bin directory, where the shell
variable WEST_ROOT points to the path where the WESTPA package is located
on your machine.

You may wish to set this variable automatically by adding the following to your
~/.bashrc or ~/.profile file:

export WEST_ROOT="$HOME/westpa"

where the path to the westpa suite is modified accordingly.

Tools for setting up and running a simulation

Use the following commands to initialize, configure, and run a weighted
ensemble simulation. Command line arguments or environmental variables can be
set to specify the work managers for running the simulation, where
configuration data is read from, and the HDF5 file in which results are
stored.

	Command

	Function

	w_init

	Initializes simulation configuration files and environment.
Always run this command before starting a new simulation.

	w_bins

	Set up binning, progress coordinate

	w_run

	Launches a simulation. Command arguments/environmental
variables can be included to specify the work managers and
simulation parameters

	w_truncate

	Truncates the weighted ensemble simulation from a given
iteration.

Tools for analyzing simulation results

The following command line tools are provided for analysis after running a
weighted ensemble simulation (and collecting the results in an HDF5 file).

With the exception of the plotting tool plothist, all analysis tools read
from and write to HDF5 type files.

	Command

	Function

	w_assign

	Assign walkers to bins and macrostates (using simulation
output as input). Must be done before some other analysis
tools (e.g. w_kinetics, w_kinavg)

	w_trace

	Trace the path of a given walker segment over a
user-specified number of simulation iterations.

	w_fluxanl

	Calculate average probability flux into user-defined
‘target’ state with relevant statistics.

	w_pdist

	Construct a probability distribution of results (e.g.
progress coordinate membership) for subsequent plotting
with plothist.

	plothist

	Tool to plot output from other analysis tools (e.g.
w_pdist).

General Command Line Options

The following arguments are shared by all command line tools:

-r config file, --rcfile config file
 Use config file as the configuration file (Default: File named west.cfg)
--quiet, --verbose, --debug
 Specify command tool output verbosity (Default: 'quiet' mode)
--version
 Print WESTPA version number and exit
-h, --help
 Output the help information for this command line tool and exit

A note on specifying a configuration file

A configuration file, which should be stored in your simulation root
directory, is read by all command line tools. The configuration file
specifies parameters for general simulation setup, as well as the hdf5 file
name where simulation data is stored and read by analysis tools.

If not specified, the default configuration file is assumed to be named
west.cfg.

You can override this to use configuration file file by either:

	Setting the environmental variable WESTRC equal to file:

export WESTRC=/path/to/westrcfile

	Including the command line argument -r /path/to/westrcfile

Work Manager Options

Note: See wwmgr overview for a more detailed explanation of the
work manager framework.

Work managers a used by a number of command-line tools to process more complex
tasks, especially in setting up and running simulations (i.e. w_init and
w_run) - in general, work managers are involved in tasks that require
multiprocessing and/or tasks distributed over multiple nodes in a cluster.

Overview

The following command-line tools make use of work managers:

	w_init

	w_run

General work manager options

The following are general options used for specifying the type of work
manager and number of cores:

--wm-work-manager work_manager
 Specify which type of work manager to use, where the possible choices for
 work_manager are: {processes, gcserial, threads, mpi, or zmq}. See the
 wwmgr overview page <wwmgr>_ for more information on the different types of
 work managers (Default: gcprocesses)
--wm-n-workers n_workers
 Specify the number of cores to use as gcn_workers, if the work manager you
 selected supports this option (work managers that do not will ignore this
 option). If using an gcmpi or zmq work manager, specify gc--wm-n-workers=0
 for a dedicated server (Default: Number of cores available on machine)

The mpi work manager is generally sufficient for most tasks that make use
of multiple nodes on a cluster. The zmq work manager is preferable if the
mpi work manager does not work properly on your cluster or if you prefer to
have more explicit control over the distribution of communication tasks on your
cluster.

ZeroMQ (‘zmq’) work manager

The ZeroMQ work manager offers a number of additional options (all of
which are optional and have default values). All of these options focus
on whether the zmq work manager is set up as a server (i.e. task
distributor/ventilator) or client (task processor):

--wm-zmq-mode mode
 Options: {server or client}. Specify whether the ZMQ work manager on this
 node will operate as a server or a client (Default: server)

--wm-zmq-info-file info_file
 Specify the name of a temporary file to write (as a server) or read (as a
 client) socket connection endpoints (Default: server_x.json, where x is a
 unique identifier string)

--wm-zmq-task-endpoint task_endpoint
 Explicitly use task_endpoint to bind to (as server) or connect to (as
 client) for task distribution (Default: A randomly determined endpoint that
 is written or read from the specified info_file)

--wm-zmq-result-endpoint result_endpoint
 Explicitly use result_endpoint to bind to (as server) or connect to (as
 client) to distribute and collect task results (Default: A randomly
 determined endpoint that is written to or read from the specified
 info_file)

--wm-zmq-announce-endpoint announce_endpoint
 Explicitly use announce_endpoint to bind to (as server) or connect to (as
 client) to distribute central announcements (Default: A randomly determined
 endpoint that is written to or read from the specified info_file)

--wm-zmq-heartbeat-interval interval
 If a server, send an Im alive ping to connected clients every interval
 seconds; If a client, expect to hear a server ping every approximately
 interval seconds, or else assume the server has crashed and shutdown
 (Default: 600 seconds)

--wm-zmq-task-timeout timeout
 Kill worker processes/jobs after that take longer than timeout seconds to
 complete (Default: no time limit)

--wm-zmq-client-comm-mode mode
 Use the communication mode, mode, (options: {ipc for Unix sockets, or tcp
 for TCP/IP sockets}) to communicate with worker processes (Default: ipc)

Initializing/Running Simulations

For a more complete overview of all the files necessary for setting up a
simulation, see the user guide for setting up a simulation

WEST Work Manager

Introduction

WWMGR is the parallel task distribution framework originally included as part
of the WEMD source. It was extracted to permit independent development, and
(more importantly) independent testing. A number of different schemes can be
selected at run-time for distributing work across multiple cores/nodes, as
follows:

	Name

	Implementation

	Multi-Core

	Multi-Node

	Appropriate For

	serial

	None

	No

	No

	Testing, minimizing overhead
when dynamics is inexpensive

	threads

	Python “threading” module

	Yes

	No

	Dynamics propagated by external
executables, large amounts of
data transferred per segment

	processes

	Python “multiprocessing” module

	Yes

	No

	Dynamics propagated by Python
routines, modest amounts of
data transferred per segment

	mpi

	mpi4py [http://mpi4py.scipy.org/]
compiled and linked against system MPI

	Yes

	Yes

	Distributing calculations
across multiple nodes. Start
with this on your cluster of
choice.

	zmq

	ZeroMQ [http://www.zeromq.org/]
and PyZMQ [http://zeromq.github.com/pyzmq/]

	Yes

	Yes

	Distributing calculations
across multiple nodes. Use this
if MPI does not work properly
on your cluster (particularly
for spawning child processes).

Environment variables

For controlling task distribution

While the original WEMD work managers were controlled by command-line options
and entries in wemd.cfg, the new work manager is controlled using command-line
options or environment variables (much like OpenMP). These variables are as
follow:

	Variable

	Applicable to

	Default

	Meaning

	WM_WORK_MANAGER

	(none)

	processes

	Use the given task distribution
system: “serial”, “threads”,
“processes”, or “zmq”

	WM_N_WORKERS

	threads, processes, zmq

	number of cores in machine

	Use this number of workers. In
the case of zmq, use this many
workers on the current machine
only (can be set independently
on different nodes).

	WM_ZMQ_MODE

	zmq

	server

	Start as a server (“server”) or
a client (“client”). Servers
coordinate a given calculation,
and clients execute tasks
related to that calculation.

	WM_ZMQ_TASK_TIMEOUT

	zmq

	60

	Time (in seconds) after which a
worker will be considered hung,
terminated, and restarted. This
must be updated for
long-running dynamics segments.
Set to zero to disable hang
checks entirely.

	WM_ZMQ_TASK_ENDPOINT

	zmq

	Random port

	Master distributes tasks at
this address

	WM_ZMQ_RESULT_ENDPOINT

	zmq

	Random port

	Master receives task results at
this address |

	WM_ZMQ_ANNOUNCE_ENDPOINT

	zmq

	Random port

	Master publishes announcements
(such as “shut down now”) at
this address

	WM_ZMQ_SERVER_INFO

	zmq

	zmq_server_info_PID_ID.json
(where PID is a process ID and
ID is a nearly random hex number)

	A file describing the above
endpoints can be found here (to
ease cluster-wide startup)

For passing information to workers

One environment variable is made available by multi-process work managers
(processes and ZMQ) to help clients configure themselves (e.g. select an
appropriate GPU on a multi-GPU node):

	Variable

	Applicable to

	Meaning

	WM_PROCESS_INDEX

	processes, zmq

	Contains an integer, 0 based, identifying the
process among the set of processes started on a
given node.

The ZeroMQ work manager for clusters

The ZeroMQ (“zmq”) work manager can be used for both single-machine and
cluster-wide communication. Communication occurs over sockets using the ZeroMQ [http://www.zeromq.org/] messaging protocol. Within nodes, Unix sockets [http://en.wikipedia.org/wiki/UNIX_socket] are used for efficient
communication, while between nodes, TCP sockets are used. This also minimizes
the number of open sockets on the master node.

The quick and dirty guide to using this on a cluster is as follows:

source env.sh
export WM_WORK_MANAGER=zmq
export WM_ZMQ_COMM_MODE=tcp
export WM_ZMQ_SERVER_INFO=$WEST_SIM_ROOT/wemd_server_info.json

w_run &

manually run w_run on each client node, as appropriate for your batch system
e.g. qrsh -inherit for Grid Engine, or maybe just simple SSH

for host in $(cat $TMPDIR/machines | sort | uniq); do
 qrsh -inherit -V $host $PWD/node-ltc1.sh &
done

WEST Extensions

Post-Analysis Reweighting

String Method

Weighted Ensemble Equilibrium Dynamics

Weighted Ensemble Steady State

Command Line Tool Index

Setting up and running a simulation:

	 w_init

	 w_bins

	 w_run

	 w_truncate

	 w_fork

Analyzing a simulation:

	 w_assign

	 w_trace

	 w_fluxanl

	 w_ipa

	 w_pdist

	 w_succ

	 w_crawl

	 w_direct

	 w_select

	 w_states

	 w_eddist

	 w_ntop

Plotting tools:

	 plothist

	 ploterr

Deprecated tools:

	 w_kinavg

	 w_kinetics

	 w_stateprobs

w_init

usage:

w_init [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [--force]
 [--bstate-file BSTATE_FILE] [--bstate BSTATES] [--tstate-file TSTATE_FILE]
 [--tstate TSTATES] [--segs-per-state N] [--no-we]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Initialize a new WEST simulation, creating the WEST HDF5 file and preparing the first iteration’s
segments. Initial states are generated from one or more “basis states” which are specified either in a
file specified with –bstates-from, or by one or more “–bstate” arguments. If neither –bstates-from
nor at least one “–bstate” argument is provided, then a default basis state of probability one
identified by the state ID zero and label “basis” will be created (a warning will be printed in this
case, to remind you of this behavior, in case it is not what you wanted). Target states for (non-
equilibrium) steady-state simulations are specified either in a file specified with –tstates-from, or
by one or more –tstate arguments. If neither –tstates-from nor at least one –tstate argument is
provided, then an equilibrium simulation (without any sinks) will be performed.

optional arguments:

-h, --help show this help message and exit
--force Overwrite any existing simulation data
--bstate-file BSTATE_FILE, --bstates-from BSTATE_FILE
 Read basis state names, probabilities, and (optionally) data references from
 BSTATE_FILE.
--bstate BSTATES Add the given basis state (specified as a string 'label,probability[,auxref]')
 to the list of basis states (after those specified in --bstates-from, if any).
 This argument may be specified more than once, in which case the given states
 are appended in the order they are given on the command line.
--tstate-file TSTATE_FILE, --tstates-from TSTATE_FILE
 Read target state names and representative progress coordinates from
 TSTATE_FILE
--tstate TSTATES Add the given target state (specified as a string
 'label,pcoord0[,pcoord1[,...]]') to the list of target states (after those
 specified in the file given by --tstates-from, if any). This argument may be
 specified more than once, in which case the given states are appended in the
 order they appear on the command line.
--segs-per-state N Initialize N segments from each basis state (default: 1).
--no-we, --shotgun Do not run the weighted ensemble bin/split/merge algorithm on newly-created
 segments.

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work
 managers are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option.
 Use 0 for a dedicated server. (Ignored by work managers which do not support
 this option.)

	options for ZeroMQ (“zmq”) work manager (master or node):
	
	--zmq-mode MODE

	Operate as a master (server) or a node (workers/client). “server” is a
deprecated synonym for “master” and “client” is a deprecated synonym for
“node”.

	--zmq-comm-mode COMM_MODE

	Use the given communication mode – TCP or IPC (Unix-domain) – sockets for
communication within a node. IPC (the default) may be more efficient but is not
available on (exceptionally rare) systems without node-local storage (e.g.
/tmp); on such systems, TCP may be used instead.

	--zmq-write-host-info INFO_FILE

	Store hostname and port information needed to connect to this instance in
INFO_FILE. This allows the master and nodes assisting in coordinating the
communication of other nodes to choose ports randomly. Downstream nodes read
this file with –zmq-read-host-info and know where how to connect.

	--zmq-read-host-info INFO_FILE

	Read hostname and port information needed to connect to the master (or other
coordinating node) from INFO_FILE. This allows the master and nodes assisting
in coordinating the communication of other nodes to choose ports randomly,
writing that information with –zmq-write-host-info for this instance to read.

	--zmq-upstream-rr-endpoint ENDPOINT

	ZeroMQ endpoint to which to send request/response (task and result) traffic
toward the master.

	--zmq-upstream-ann-endpoint ENDPOINT

	ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
notification) traffic from the master.

	--zmq-downstream-rr-endpoint ENDPOINT

	ZeroMQ endpoint on which to listen for request/response (task and result)
traffic from subsidiary workers.

	--zmq-downstream-ann-endpoint ENDPOINT

	ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
notification) traffic toward workers.

	--zmq-master-heartbeat MASTER_HEARTBEAT

	Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.

	--zmq-worker-heartbeat WORKER_HEARTBEAT

	Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.

	--zmq-timeout-factor FACTOR

	Scaling factor for heartbeat timeouts. If the master doesn’t hear from a worker
in WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
doesn’t hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
assumed to have crashed. Both cases result in shutdown.

	--zmq-startup-timeout STARTUP_TIMEOUT

	Amount of time (in seconds) to wait for communication between the master and at
least one worker. This may need to be changed on very large, heavily-loaded
computer systems that start all processes simultaneously.

	--zmq-shutdown-timeout SHUTDOWN_TIMEOUT

	Amount of time (in seconds) to wait for workers to shut down.

w_bins

w_bins deals with binning modification and statistics

Overview

Usage:

$WEST_ROOT/bin/w_bins [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [-W WEST_H5FILE]
 {info,rebin} ...

Display information and statistics about binning in a WEST simulation, or
modify the binning for the current iteration of a WEST simulation.

Command-Line Options

See the general command-line tool reference for
more information on the general options.

Options Under ‘info’

Usage:

$WEST_ROOT/bin/w_bins info [-h] [-n N_ITER] [--detail]
 [--bins-from-system | --bins-from-expr BINS_FROM_EXPR | --bins-from-function BINS_FROM_FUNCTION | --bins-from-file]

Positional options:

info
 Display information about binning.

Options for ‘info’:

-n N_ITER, --n-iter N_ITER
 Consider initial points of segment N_ITER (default: current
 iteration).

--detail
 Display detailed per-bin information in addition to summary
 information.

Binning options for ‘info’:

--bins-from-system
 Bins are constructed by the system driver specified in the WEST
 configuration file (default where stored bin definitions not
 available).

--bins-from-expr BINS_FROM_EXPR, --binbounds BINS_FROM_EXPR
 Construct bins on a rectilinear grid according to the given BINEXPR.
 This must be a list of lists of bin boundaries (one list of bin
 boundaries for each dimension of the progress coordinate), formatted
 as a Python expression. E.g. "[[0,1,2,4,inf],[-inf,0,inf]]". The
 numpy module and the special symbol "inf" (for floating-point
 infinity) are available for use within BINEXPR.

--bins-from-function BINS_FROM_FUNCTION, --binfunc BINS_FROM_FUNCTION
 Supply an external function which, when called, returns a properly
 constructed bin mapper which will then be used for bin assignments.
 This should be formatted as "[PATH:]MODULE.FUNC", where the function
 FUNC in module MODULE will be used; the optional PATH will be
 prepended to the module search path when loading MODULE.

--bins-from-file
 Load bin specification from the data file being examined (default
 where stored bin definitions available).

Options Under ‘rebin’

Usage:

$WEST_ROOT/bin/w_bins rebin [-h] [--confirm] [--detail]
 [--bins-from-system | --bins-from-expr BINS_FROM_EXPR | --bins-from-function BINS_FROM_FUNCTION]
 [--target-counts TARGET_COUNTS | --target-counts-from FILENAME]

Positional option:

rebin
 Rebuild current iteration with new binning.

Options for ‘rebin’:

--confirm
 Commit the revised iteration to HDF5; without this option, the
 effects of the new binning are only calculated and printed.

--detail
 Display detailed per-bin information in addition to summary
 information.

Binning options for ‘rebin’;

Same as the binning options for ‘info’.

Bin target count options for ‘rebin’;:

--target-counts TARGET_COUNTS
 Use TARGET_COUNTS instead of stored or system driver target counts.
 TARGET_COUNTS is a comma-separated list of integers. As a special
 case, a single integer is acceptable, in which case the same target
 count is used for all bins.

--target-counts-from FILENAME
 Read target counts from the text file FILENAME instead of using
 stored or system driver target counts. FILENAME must contain a list
 of integers, separated by arbitrary whitespace (including newlines).

Input Options

-W WEST_H5FILE, --west_data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file
 specified in west.cfg).

Examples

(TODO: Write up an example)

w_run

usage:

w_run [-h]

Start/continue a WEST simulation

optional arguments:

-h, --help show this help message and exit
--oneseg only propagate one segment (useful for debugging propagators)

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work
 managers are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option.
 Use 0 for a dedicated server. (Ignored by work managers which do not support
 this option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a
 deprecated synonym for "master" and "client" is a deprecated synonym for
 "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g.
 /tmp); on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read
 this file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting
 in coordinating the communication of other nodes to choose ports randomly,
 writing that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic
 toward the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result)
 traffic from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker
 in WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

w_truncate

NOTE: w_truncate only deletes iteration groups from the HDF5 data store. It is recommended that any
iteration data saved to the file system (e.g. in the traj_segs directory) is deleted or moved for the
corresponding iterations.

usage:

w_truncate [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-n N_ITER]

Remove all iterations after a certain point in a WESTPA simulation.

optional arguments:

-h, --help show this help message and exit
-n N_ITER, --iter N_ITER
 Truncate this iteration and those following.

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

w_fork

usage:

w_fork [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-i INPUT_H5FILE]
 [-I N_ITER] [-o OUTPUT_H5FILE] [--istate-map ISTATE_MAP] [--no-headers]

Prepare a new weighted ensemble simulation from an existing one at a particular point. A new HDF5 file
is generated. In the case of executable propagation, it is the user’s responsibility to prepare the new
simulation directory appropriately, particularly making the old simulation’s restart data from the
appropriate iteration available as the new simulations initial state data; a mapping of old simulation
segment to new simulation initial states is created, both in the new HDF5 file and as a flat text file,
to aid in this. Target states and basis states for the new simulation are taken from those in the
original simulation.

optional arguments:

-h, --help show this help message and exit
-i INPUT_H5FILE, --input INPUT_H5FILE
 Create simulation from the given INPUT_H5FILE (default: read from configuration
 file.
-I N_ITER, --iteration N_ITER
 Take initial distribution for new simulation from iteration N_ITER (default:
 last complete iteration).
-o OUTPUT_H5FILE, --output OUTPUT_H5FILE
 Save new simulation HDF5 file as OUTPUT (default: forked.h5).
--istate-map ISTATE_MAP
 Write text file describing mapping of existing segments to new initial states
 in ISTATE_MAP (default: istate_map.txt).
--no-headers Do not write header to ISTATE_MAP

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

w_assign

usage:

w_assign [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH] [-W WEST_H5FILE]
 [--bins-from-system | --bins-from-expr BINS_FROM_EXPR | --bins-from-function BINS_FROM_FUNCTION | --bins-from-file BINFILE | --bins-from-h5file]
 [--construct-dataset CONSTRUCT_DATASET | --dsspecs DSSPEC [DSSPEC ...]]
 [--states STATEDEF [STATEDEF ...] | --states-from-file STATEFILE |
 --states-from-function STATEFUNC] [-o OUTPUT] [--subsample] [--config-from-file]
 [--scheme-name SCHEME] [--serial | --parallel | --work-manager WORK_MANAGER]
 [--n-workers N_WORKERS] [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE]
 [--zmq-write-host-info INFO_FILE] [--zmq-read-host-info INFO_FILE]
 [--zmq-upstream-rr-endpoint ENDPOINT] [--zmq-upstream-ann-endpoint ENDPOINT]
 [--zmq-downstream-rr-endpoint ENDPOINT] [--zmq-downstream-ann-endpoint ENDPOINT]
 [--zmq-master-heartbeat MASTER_HEARTBEAT] [--zmq-worker-heartbeat WORKER_HEARTBEAT]
 [--zmq-timeout-factor FACTOR] [--zmq-startup-timeout STARTUP_TIMEOUT]
 [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Assign walkers to bins, producing a file (by default named “assign.h5”)
which can be used in subsequent analysis.

For consistency in subsequent analysis operations, the entire dataset
must be assigned, even if only a subset of the data will be used. This
ensures that analyses that rely on tracing trajectories always know the
originating bin of each trajectory.

Source data

Source data is provided either by a user-specified function
(–construct-dataset) or a list of “data set specifications” (–dsspecs).
If neither is provided, the progress coordinate dataset ‘’pcoord’’ is used.

To use a custom function to extract or calculate data whose probability
distribution will be calculated, specify the function in standard Python
MODULE.FUNCTION syntax as the argument to –construct-dataset. This function
will be called as function(n_iter,iter_group), where n_iter is the iteration
whose data are being considered and iter_group is the corresponding group
in the main WEST HDF5 file (west.h5). The function must return data which can
be indexed as [segment][timepoint][dimension].

To use a list of data set specifications, specify –dsspecs and then list the
desired datasets one-by-one (space-separated in most shells). These data set
specifications are formatted as NAME[,file=FILENAME,slice=SLICE], which will
use the dataset called NAME in the HDF5 file FILENAME (defaulting to the main
WEST HDF5 file west.h5), and slice it with the Python slice expression SLICE
(as in [0:2] to select the first two elements of the first axis of the
dataset). The slice option is most useful for selecting one column (or
more) from a multi-column dataset, such as arises when using a progress
coordinate of multiple dimensions.

Specifying macrostates

Optionally, kinetic macrostates may be defined in terms of sets of bins.
Each trajectory will be labeled with the kinetic macrostate it was most
recently in at each timepoint, for use in subsequent kinetic analysis.
This is required for all kinetics analysis (w_kintrace and w_kinmat).

There are three ways to specify macrostates:

	States corresponding to single bins may be identified on the command
line using the –states option, which takes multiple arguments, one for
each state (separated by spaces in most shells). Each state is specified
as a coordinate tuple, with an optional label prepended, as in
bound:1.0 or unbound:(2.5,2.5). Unlabeled states are named
stateN, where N is the (zero-based) position in the list of states
supplied to –states.

	States corresponding to multiple bins may use a YAML input file specified
with –states-from-file. This file defines a list of states, each with a
name and a list of coordinate tuples; bins containing these coordinates
will be mapped to the containing state. For instance, the following
file:

states:
 - label: unbound
 coords:
 - [9.0, 1.0]
 - [9.0, 2.0]
 - label: bound
 coords:
 - [0.1, 0.0]

produces two macrostates: the first state is called “unbound” and
consists of bins containing the (2-dimensional) progress coordinate
values (9.0, 1.0) and (9.0, 2.0); the second state is called “bound”
and consists of the single bin containing the point (0.1, 0.0).

	Arbitrary state definitions may be supplied by a user-defined function,
specified as –states-from-function=MODULE.FUNCTION. This function is
called with the bin mapper as an argument (function(mapper)) and must
return a list of dictionaries, one per state. Each dictionary must contain
a vector of coordinate tuples with key “coords”; the bins into which each
of these tuples falls define the state. An optional name for the state
(with key “label”) may also be provided.

Output format

The output file (-o/–output, by default “assign.h5”) contains the following
attributes datasets:

``nbins`` attribute
 (Integer) Number of valid bins. Bin assignments range from 0 to
 nbins-1, inclusive.

``nstates`` attribute
 (Integer) Number of valid macrostates (may be zero if no such states are
 specified). Trajectory ensemble assignments range from 0 to *nstates*-1,
 inclusive, when states are defined.

``/assignments`` [iteration][segment][timepoint]
 (Integer) Per-segment and -timepoint assignments (bin indices).

``/npts`` [iteration]
 (Integer) Number of timepoints in each iteration.

``/nsegs`` [iteration]
 (Integer) Number of segments in each iteration.

``/labeled_populations`` [iterations][state][bin]
 (Floating-point) Per-iteration and -timepoint bin populations, labeled
 by most recently visited macrostate. The last state entry (*nstates-1*)
 corresponds to trajectories initiated outside of a defined macrostate.

``/bin_labels`` [bin]
 (String) Text labels of bins.

When macrostate assignments are given, the following additional datasets are
present:

``/trajlabels`` [iteration][segment][timepoint]
 (Integer) Per-segment and -timepoint trajectory labels, indicating the
 macrostate which each trajectory last visited.

``/state_labels`` [state]
 (String) Labels of states.

``/state_map`` [bin]
 (Integer) Mapping of bin index to the macrostate containing that bin.
 An entry will contain *nbins+1* if that bin does not fall into a
 macrostate.

Datasets indexed by state and bin contain one more entry than the number of
valid states or bins. For N bins, axes indexed by bin are of size N+1, and
entry N (0-based indexing) corresponds to a walker outside of the defined bin
space (which will cause most mappers to raise an error). More importantly, for
M states (including the case M=0 where no states are specified), axes
indexed by state are of size M+1 and entry M refers to trajectories
initiated in a region not corresponding to a defined macrostate.

Thus, labeled_populations[:,:,:].sum(axis=1)[:,:-1] gives overall per-bin
populations, for all defined bins and
labeled_populations[:,:,:].sum(axis=2)[:,:-1] gives overall
per-trajectory-ensemble populations for all defined states.

Parallelization

This tool supports parallelized binning, including reading/calculating input
data.

Command-line options

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks
 that have very large requests/response. Default: no limit.

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

	binning options:
	
	--bins-from-system

	Bins are constructed by the system driver specified in the WEST configuration
file (default where stored bin definitions not available).

	--bins-from-expr BINS_FROM_EXPR, --binbounds BINS_FROM_EXPR

	Construct bins on a rectilinear grid according to the given BINEXPR. This must
be a list of lists of bin boundaries (one list of bin boundaries for each
dimension of the progress coordinate), formatted as a Python expression. E.g.
“[[0,1,2,4,inf],[-inf,0,inf]]”. The numpy module and the special symbol “inf”
(for floating-point infinity) are available for use within BINEXPR.

	--bins-from-function BINS_FROM_FUNCTION, --binfunc BINS_FROM_FUNCTION

	Supply an external function which, when called, returns a properly constructed
bin mapper which will then be used for bin assignments. This should be
formatted as “[PATH:]MODULE.FUNC”, where the function FUNC in module MODULE
will be used; the optional PATH will be prepended to the module search path
when loading MODULE.

	--bins-from-file BINFILE, --binfile BINFILE

	Load bin specification from the YAML file BINFILE. This currently takes the
form {‘bins’: {‘type’: ‘RectilinearBinMapper’, ‘boundaries’: [[boundset1],
[boundset2], …]}}; only rectilinear bin bounds are supported.

	--bins-from-h5file

	Load bin specification from the data file being examined (default where stored
bin definitions available).

input dataset options:

--construct-dataset CONSTRUCT_DATASET
 Use the given function (as in module.function) to extract source data. This
 function will be called once per iteration as function(n_iter, iter_group) to
 construct data for one iteration. Data returned must be indexable as
 [seg_id][timepoint][dimension]
--dsspecs DSSPEC [DSSPEC ...]
 Construct source data from one or more DSSPECs.

macrostate definitions:

--states STATEDEF [STATEDEF ...]
 Single-bin kinetic macrostate, specified by a coordinate tuple (e.g. '1.0' or
 '[1.0,1.0]'), optionally labeled (e.g. 'bound:[1.0,1.0]'). States corresponding
 to multiple bins must be specified with --states-from-file.
--states-from-file STATEFILE
 Load kinetic macrostates from the YAML file STATEFILE. See description above
 for the appropriate structure.
--states-from-function STATEFUNC
 Load kinetic macrostates from the function STATEFUNC, specified as
 module_name.func_name. This function is called with the bin mapper as an
 argument, and must return a list of dictionaries {'label': state_label,
 'coords': 2d_array_like} one for each macrostate; the 'coords' entry must
 contain enough rows to identify all bins in the macrostate.

other options:

-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: assign.h5).
--subsample Determines whether or not the data should be subsampled. This is rather useful
 for analysing steady state simulations.
--config-from-file Load bins/macrostates from a scheme specified in west.cfg.
--scheme-name SCHEME Name of scheme specified in west.cfg.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work
 managers are ('serial', 'threads', 'processes', 'zmq'); default is 'processes'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option.
 Use 0 for a dedicated server. (Ignored by work managers which do not support
 this option.)

	options for ZeroMQ (“zmq”) work manager (master or node):
	
	--zmq-mode MODE

	Operate as a master (server) or a node (workers/client). “server” is a
deprecated synonym for “master” and “client” is a deprecated synonym for
“node”.

	--zmq-comm-mode COMM_MODE

	Use the given communication mode – TCP or IPC (Unix-domain) – sockets for
communication within a node. IPC (the default) may be more efficient but is not
available on (exceptionally rare) systems without node-local storage (e.g.
/tmp); on such systems, TCP may be used instead.

	--zmq-write-host-info INFO_FILE

	Store hostname and port information needed to connect to this instance in
INFO_FILE. This allows the master and nodes assisting in coordinating the
communication of other nodes to choose ports randomly. Downstream nodes read
this file with –zmq-read-host-info and know where how to connect.

	--zmq-read-host-info INFO_FILE

	Read hostname and port information needed to connect to the master (or other
coordinating node) from INFO_FILE. This allows the master and nodes assisting
in coordinating the communication of other nodes to choose ports randomly,
writing that information with –zmq-write-host-info for this instance to read.

	--zmq-upstream-rr-endpoint ENDPOINT

	ZeroMQ endpoint to which to send request/response (task and result) traffic
toward the master.

	--zmq-upstream-ann-endpoint ENDPOINT

	ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
notification) traffic from the master.

	--zmq-downstream-rr-endpoint ENDPOINT

	ZeroMQ endpoint on which to listen for request/response (task and result)
traffic from subsidiary workers.

	--zmq-downstream-ann-endpoint ENDPOINT

	ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
notification) traffic toward workers.

	--zmq-master-heartbeat MASTER_HEARTBEAT

	Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.

	--zmq-worker-heartbeat WORKER_HEARTBEAT

	Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.

	--zmq-timeout-factor FACTOR

	Scaling factor for heartbeat timeouts. If the master doesn’t hear from a worker
in WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
doesn’t hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
assumed to have crashed. Both cases result in shutdown.

	--zmq-startup-timeout STARTUP_TIMEOUT

	Amount of time (in seconds) to wait for communication between the master and at
least one worker. This may need to be changed on very large, heavily-loaded
computer systems that start all processes simultaneously.

	--zmq-shutdown-timeout SHUTDOWN_TIMEOUT

	Amount of time (in seconds) to wait for workers to shut down.

w_trace

usage:

w_trace [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-W WEST_H5FILE]
 [-d DSNAME] [--output-pattern OUTPUT_PATTERN] [-o OUTPUT]
 N_ITER:SEG_ID [N_ITER:SEG_ID ...]

Trace individual WEST trajectories and emit (or calculate) quantities along the
trajectory.

Trajectories are specified as N_ITER:SEG_ID pairs. Each segment is traced back
to its initial point, and then various quantities (notably n_iter and seg_id)
are printed in order from initial point up until the given segment in the given
iteration.

Output is stored in several files, all named according to the pattern given by
the -o/–output-pattern parameter. The default output pattern is “traj_%d_%d”,
where the printf-style format codes are replaced by the iteration number and
segment ID of the terminal segment of the trajectory being traced.

Individual datasets can be selected for writing using the -d/--dataset option
(which may be specified more than once). The simplest form is -d dsname,
which causes data from dataset dsname along the trace to be stored to
HDF5. The dataset is assumed to be stored on a per-iteration basis, with
the first dimension corresponding to seg_id and the second dimension
corresponding to time within the segment. Further options are specified
as comma-separated key=value pairs after the data set name, as in:

-d dsname,alias=newname,index=idsname,file=otherfile.h5,slice=[100,...]

The following options for datasets are supported:

alias=newname
 When writing this data to HDF5 or text files, use ``newname``
 instead of ``dsname`` to identify the dataset. This is mostly of
 use in conjunction with the ``slice`` option in order, e.g., to
 retrieve two different slices of a dataset and store then with
 different names for future use.

index=idsname
 The dataset is not stored on a per-iteration basis for all
 segments, but instead is stored as a single dataset whose
 first dimension indexes n_iter/seg_id pairs. The index to
 these n_iter/seg_id pairs is ``idsname``.

file=otherfile.h5
 Instead of reading data from the main WEST HDF5 file (usually
 ``west.h5``), read data from ``otherfile.h5``.

slice=[100,...]
 Retrieve only the given slice from the dataset. This can be
 used to pick a subset of interest to minimize I/O.

positional arguments

N_ITER:SEG_ID Trace trajectory ending (or at least alive at) N_ITER:SEG_ID.

optional arguments

-h, --help show this help message and exit
-d DSNAME, --dataset DSNAME
 Include the dataset named DSNAME in trace output. An extended form like
 DSNAME[,alias=ALIAS][,index=INDEX][,file=FILE][,slice=SLICE] will obtain the
 dataset from the given FILE instead of the main WEST HDF5 file, slice it by
 SLICE, call it ALIAS in output, and/or access per-segment data by a
 n_iter,seg_id INDEX instead of a seg_id indexed dataset in the group for
 n_iter.

general options

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

WEST input data options

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

output options

--output-pattern OUTPUT_PATTERN
 Write per-trajectory data to output files/HDF5 groups whose names begin with
 OUTPUT_PATTERN, which must contain two printf-style format flags which will be
 replaced with the iteration number and segment ID of the terminal segment of
 the trajectory being traced. (Default: traj_%d_%d.)
-o OUTPUT, --output OUTPUT
 Store intermediate data and analysis results to OUTPUT (default: trajs.h5).

w_fluxanl

w_fluxanl calculates the probability flux of a weighted ensemble simulation
based on a pre-defined target state. Also calculates confidence interval of
average flux. Monte Carlo bootstrapping techniques are used to account for
autocorrelation between fluxes and/or errors that are not normally distributed.

Overview

usage:

$WEST_ROOT/bin/w_fluxanl [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [-W WEST_H5FILE] [-o OUTPUT]
 [--first-iter N_ITER] [--last-iter N_ITER]
 [-a ALPHA] [--autocorrel-alpha ACALPHA] [-N NSETS] [--evol] [--evol-step ESTEP]

Note: All command line arguments are optional for w_fluxanl.

Command-Line Options

See the general command-line tool reference for more
information on the general options.

Input/output options

These arguments allow the user to specify where to read input simulation result
data and where to output calculated progress coordinate probability
distribution data.

Both input and output files are hdf5 format.:

-W, --west-data file
 Read simulation result data from file *file*. (**Default:** The
 hdf5 file specified in the configuration file)

-o, --output file
 Store this tool's output in *file*. (**Default:** The *hdf5* file
 pcpdist.h5)

Iteration range options

Specify the range of iterations over which to construct the progress
coordinate probability distribution.:

--first-iter n_iter
 Construct probability distribution starting with iteration *n_iter*
 (**Default:** 1)

--last-iter n_iter
 Construct probability distribution's time evolution up to (and
 including) iteration *n_iter* (**Default:** Last completed
 iteration)

Confidence interval and bootstrapping options

Specify alpha values of constructed confidence intervals.:

-a alpha
 Calculate a (1 - *alpha*) confidence interval for the mean flux
 (**Default:** 0.05)

--autocorrel-alpha ACalpha
 Identify autocorrelation of fluxes at *ACalpha* significance level.
 Note: Specifying an *ACalpha* level that is too small may result in
 failure to find autocorrelation in noisy flux signals (**Default:**
 Same level as *alpha*)

-N n_sets, --nsets n_sets
 Use *n_sets* samples for bootstrapping (**Default:** Chosen based
 on *alpha*)

--evol
 Calculate the time evolution of flux confidence intervals
 (**Warning:** computationally expensive calculation)

--evol-step estep
 (if ``'--evol'`` specified) Calculate the time evolution of flux
 confidence intervals for every *estep* iterations (**Default:** 1)

Examples

Calculate the time evolution flux every 5 iterations:

$WEST_ROOT/bin/w_fluxanl --evol --evol-step 5

Calculate mean flux confidence intervals at 0.01 signicance level and
calculate autocorrelations at 0.05 significance:

$WEST_ROOT/bin/w_fluxanl --alpha 0.01 --autocorrel-alpha 0.05

Calculate the mean flux confidence intervals using a custom bootstrap
sample size of 500:

$WEST_ROOT/bin/w_fluxanl --n-sets 500

w_ipa

usage:

w_ipa [-h] [-r RCFILE] [--quiet] [--verbose] [--version] [--max-queue-length MAX_QUEUE_LENGTH]
 [-W WEST_H5FILE] [--analysis-only] [--reanalyze] [--ignore-hash] [--debug] [--terminal]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

optional arguments:

-h, --help show this help message and exit

	general options:
	
	-r RCFILE, --rcfile RCFILE

	use RCFILE as the WEST run-time configuration file (default: west.cfg)

	--quiet

	emit only essential information

	--verbose

	emit extra information

	--version

	show program’s version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks that
 have very large requests/response. Default: no limit.

	WEST input data options:
	
	-W WEST_H5FILE, --west-data WEST_H5FILE

	Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
west.cfg).

runtime options:

--analysis-only, -ao Use this flag to run the analysis and return to the terminal.
--reanalyze, -ra Use this flag to delete the existing files and reanalyze.
--ignore-hash, -ih Ignore hash and don't regenerate files.
--debug, -d Debug output largely intended for development.
--terminal, -t Plot output in terminal.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work managers
 are ('serial', 'threads', 'processes', 'zmq'); default is 'processes'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option. Use
 0 for a dedicated server. (Ignored by work managers which do not support this
 option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a deprecated
 synonym for "master" and "client" is a deprecated synonym for "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g. /tmp);
 on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read this
 file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting in
 coordinating the communication of other nodes to choose ports randomly, writing
 that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic toward
 the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result) traffic
 from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker in
 WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

w_pdist

usage:

w_pdist [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH] [-W WEST_H5FILE] [--first-iter N_ITER]
 [--last-iter N_ITER] [-b BINEXPR] [-o OUTPUT] [-C] [--loose]
 [--construct-dataset CONSTRUCT_DATASET | --dsspecs DSSPEC [DSSPEC ...]]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Calculate time-resolved, multi-dimensional probability distributions of WE
datasets.

Source data

Source data is provided either by a user-specified function
(–construct-dataset) or a list of “data set specifications” (–dsspecs).
If neither is provided, the progress coordinate dataset ‘’pcoord’’ is used.

To use a custom function to extract or calculate data whose probability
distribution will be calculated, specify the function in standard Python
MODULE.FUNCTION syntax as the argument to –construct-dataset. This function
will be called as function(n_iter,iter_group), where n_iter is the iteration
whose data are being considered and iter_group is the corresponding group
in the main WEST HDF5 file (west.h5). The function must return data which can
be indexed as [segment][timepoint][dimension].

To use a list of data set specifications, specify –dsspecs and then list the
desired datasets one-by-one (space-separated in most shells). These data set
specifications are formatted as NAME[,file=FILENAME,slice=SLICE], which will
use the dataset called NAME in the HDF5 file FILENAME (defaulting to the main
WEST HDF5 file west.h5), and slice it with the Python slice expression SLICE
(as in [0:2] to select the first two elements of the first axis of the
dataset). The slice option is most useful for selecting one column (or
more) from a multi-column dataset, such as arises when using a progress
coordinate of multiple dimensions.

Histogram binning

By default, histograms are constructed with 100 bins in each dimension. This
can be overridden by specifying -b/–bins, which accepts a number of different
kinds of arguments:

a single integer N
 N uniformly spaced bins will be used in each dimension.

a sequence of integers N1,N2,... (comma-separated)
 N1 uniformly spaced bins will be used for the first dimension, N2 for the
 second, and so on.

a list of lists [[B11, B12, B13, ...], [B21, B22, B23, ...], ...]
 The bin boundaries B11, B12, B13, ... will be used for the first dimension,
 B21, B22, B23, ... for the second dimension, and so on. These bin
 boundaries need not be uniformly spaced. These expressions will be
 evaluated with Python's ``eval`` construct, with ``np`` available for
 use [e.g. to specify bins using np.arange()].

The first two forms (integer, list of integers) will trigger a scan of all
data in each dimension in order to determine the minimum and maximum values,
which may be very expensive for large datasets. This can be avoided by
explicitly providing bin boundaries using the list-of-lists form.

Note that these bins are NOT at all related to the bins used to drive WE
sampling.

Output format

The output file produced (specified by -o/–output, defaulting to “pdist.h5”)
may be fed to plothist to generate plots (or appropriately processed text or
HDF5 files) from this data. In short, the following datasets are created:

``histograms``
 Normalized histograms. The first axis corresponds to iteration, and
 remaining axes correspond to dimensions of the input dataset.

``/binbounds_0``
 Vector of bin boundaries for the first (index 0) dimension. Additional
 datasets similarly named (/binbounds_1, /binbounds_2, ...) are created
 for additional dimensions.

``/midpoints_0``
 Vector of bin midpoints for the first (index 0) dimension. Additional
 datasets similarly named are created for additional dimensions.

``n_iter``
 Vector of iteration numbers corresponding to the stored histograms (i.e.
 the first axis of the ``histograms`` dataset).

Subsequent processing

The output generated by this program (-o/–output, default “pdist.h5”) may be
plotted by the plothist program. See plothist --help for more
information.

Parallelization

This tool supports parallelized binning, including reading of input data.
Parallel processing is the default. For simple cases (reading pre-computed
input data, modest numbers of segments), serial processing (–serial) may be
more efficient.

Command-line options

optional arguments:

-h, --help show this help message and exit
-b BINEXPR, --bins BINEXPR
 Use BINEXPR for bins. This may be an integer, which will be used for each
 dimension of the progress coordinate; a list of integers (formatted as
 [n1,n2,...]) which will use n1 bins for the first dimension, n2 for the second
 dimension, and so on; or a list of lists of boundaries (formatted as [[a1, a2,
 ...], [b1, b2, ...], ...]), which will use [a1, a2, ...] as bin boundaries for
 the first dimension, [b1, b2, ...] as bin boundaries for the second dimension,
 and so on. (Default: 100 bins in each dimension.)
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: pdist.h5).
-C, --compress Compress histograms. May make storage of higher-dimensional histograms more
 tractable, at the (possible extreme) expense of increased analysis time.
 (Default: no compression.)
--loose Ignore values that do not fall within bins. (Risky, as this can make buggy bin
 boundaries appear as reasonable data. Only use if you are sure of your bin
 boundary specification.)

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks
 that have very large requests/response. Default: no limit.

	WEST input data options:
	
	-W WEST_H5FILE, --west-data WEST_H5FILE

	Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).

input dataset options:

--construct-dataset CONSTRUCT_DATASET
 Use the given function (as in module.function) to extract source data. This
 function will be called once per iteration as function(n_iter, iter_group) to
 construct data for one iteration. Data returned must be indexable as
 [seg_id][timepoint][dimension]
--dsspecs DSSPEC [DSSPEC ...]
 Construct probability distribution from one or more DSSPECs.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work
 managers are ('serial', 'threads', 'processes', 'zmq'); default is 'processes'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option.
 Use 0 for a dedicated server. (Ignored by work managers which do not support
 this option.)

	options for ZeroMQ (“zmq”) work manager (master or node):
	
	--zmq-mode MODE

	Operate as a master (server) or a node (workers/client). “server” is a
deprecated synonym for “master” and “client” is a deprecated synonym for
“node”.

	--zmq-comm-mode COMM_MODE

	Use the given communication mode – TCP or IPC (Unix-domain) – sockets for
communication within a node. IPC (the default) may be more efficient but is not
available on (exceptionally rare) systems without node-local storage (e.g.
/tmp); on such systems, TCP may be used instead.

	--zmq-write-host-info INFO_FILE

	Store hostname and port information needed to connect to this instance in
INFO_FILE. This allows the master and nodes assisting in coordinating the
communication of other nodes to choose ports randomly. Downstream nodes read
this file with –zmq-read-host-info and know where how to connect.

	--zmq-read-host-info INFO_FILE

	Read hostname and port information needed to connect to the master (or other
coordinating node) from INFO_FILE. This allows the master and nodes assisting
in coordinating the communication of other nodes to choose ports randomly,
writing that information with –zmq-write-host-info for this instance to read.

	--zmq-upstream-rr-endpoint ENDPOINT

	ZeroMQ endpoint to which to send request/response (task and result) traffic
toward the master.

	--zmq-upstream-ann-endpoint ENDPOINT

	ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
notification) traffic from the master.

	--zmq-downstream-rr-endpoint ENDPOINT

	ZeroMQ endpoint on which to listen for request/response (task and result)
traffic from subsidiary workers.

	--zmq-downstream-ann-endpoint ENDPOINT

	ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
notification) traffic toward workers.

	--zmq-master-heartbeat MASTER_HEARTBEAT

	Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.

	--zmq-worker-heartbeat WORKER_HEARTBEAT

	Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.

	--zmq-timeout-factor FACTOR

	Scaling factor for heartbeat timeouts. If the master doesn’t hear from a worker
in WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
doesn’t hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
assumed to have crashed. Both cases result in shutdown.

	--zmq-startup-timeout STARTUP_TIMEOUT

	Amount of time (in seconds) to wait for communication between the master and at
least one worker. This may need to be changed on very large, heavily-loaded
computer systems that start all processes simultaneously.

	--zmq-shutdown-timeout SHUTDOWN_TIMEOUT

	Amount of time (in seconds) to wait for workers to shut down.

w_succ

usage:

w_succ [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-A H5FILE] [-W WEST_H5FILE]
 [-o OUTPUT_FILE]

List segments which successfully reach a target state.

optional arguments:

-h, --help show this help message and exit
-o OUTPUT_FILE, --output OUTPUT_FILE
 Store output in OUTPUT_FILE (default: write to standard output).

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

general analysis options:

-A H5FILE, --analysis-file H5FILE
 Store intermediate and final results in H5FILE (default: analysis.h5).

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

w_crawl

usage:

w_crawl [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH] [-W WEST_H5FILE] [--first-iter N_ITER]
 [--last-iter N_ITER] [-c CRAWLER_INSTANCE]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]
 task_callable

Crawl a weighted ensemble dataset, executing a function for each iteration.
This can be used for postprocessing of trajectories, cleanup of datasets,
or anything else that can be expressed as “do X for iteration N, then do
something with the result”. Tasks are parallelized by iteration, and
no guarantees are made about evaluation order.

Command-line options

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks
 that have very large requests/response. Default: no limit.

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).

task options:

-c CRAWLER_INSTANCE, --crawler-instance CRAWLER_INSTANCE
 Use CRAWLER_INSTANCE (specified as module.instance) as an instance of
 WESTPACrawler to coordinate the calculation. Required only if initialization,
 finalization, or task result processing is required.
task_callable Run TASK_CALLABLE (specified as module.function) on each iteration. Required.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work
 managers are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option.
 Use 0 for a dedicated server. (Ignored by work managers which do not support
 this option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a
 deprecated synonym for "master" and "client" is a deprecated synonym for
 "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g.
 /tmp); on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read
 this file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting
 in coordinating the communication of other nodes to choose ports randomly,
 writing that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic
 toward the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result)
 traffic from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker
 in WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

w_direct

usage:

w_direct [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]
 {help,init,average,kinetics,probs,all} ...

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks that
 have very large requests/response. Default: no limit.

direct kinetics analysis schemes:

{help,init,average,kinetics,probs,all}
 help print help for this command or individual subcommands
 init calculate state-to-state kinetics by tracing trajectories
 average Averages and returns fluxes, rates, and color/state populations.
 kinetics Generates rate and flux values from a WESTPA simulation via tracing.
 probs Calculates color and state probabilities via tracing.
 all Runs the full suite, including the tracing of events.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work managers
 are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option. Use
 0 for a dedicated server. (Ignored by work managers which do not support this
 option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a deprecated
 synonym for "master" and "client" is a deprecated synonym for "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g. /tmp);
 on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read this
 file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting in
 coordinating the communication of other nodes to choose ports randomly, writing
 that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic toward
 the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result) traffic
 from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker in
 WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

w_select

usage:

w_select [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH] [-W WEST_H5FILE] [--first-iter N_ITER]
 [--last-iter N_ITER] [-p MODULE.FUNCTION] [-v] [-a] [-o OUTPUT]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Select dynamics segments matching various criteria. This requires a
user-provided prediate function. By default, only matching segments are
stored. If the -a/–include-ancestors option is given, then matching segments
and their ancestors will be stored.

Predicate function

Segments are selected based on a predicate function, which must be callable
as predicate(n_iter, iter_group) and return a collection of segment IDs
matching the predicate in that iteration.

The predicate may be inverted by specifying the -v/–invert command-line
argument.

Output format

The output file (-o/–output, by default “select.h5”) contains the following
datasets:

``/n_iter`` [iteration]
 (Integer) Iteration numbers for each entry in other datasets.

``/n_segs`` [iteration]
 (Integer) Number of segment IDs matching the predicate (or inverted
 predicate, if -v/--invert is specified) in the given iteration.

``/seg_ids`` [iteration][segment]
 (Integer) Matching segments in each iteration. For an iteration
 ``n_iter``, only the first ``n_iter`` entries are valid. For example,
 the full list of matching seg_ids in the first stored iteration is
 ``seg_ids[0][:n_segs[0]]``.

``/weights`` [iteration][segment]
 (Floating-point) Weights for each matching segment in ``/seg_ids``.

Command-line arguments

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

parallelization options:

--max-queue-length MAX_QUEUE_LENGTH
 Maximum number of tasks that can be queued. Useful to limit RAM use for tasks that
 have very large requests/response. Default: no limit.

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).

selection options:

-p MODULE.FUNCTION, --predicate-function MODULE.FUNCTION
 Use the given predicate function to match segments. This function should take an
 iteration number and the HDF5 group corresponding to that iteration and return a
 sequence of seg_ids matching the predicate, as in ``match_predicate(n_iter,
 iter_group)``.
-v, --invert Invert the match predicate.
-a, --include-ancestors
 Include ancestors of matched segments in output.

	output options:
	
	-o OUTPUT, --output OUTPUT

	Write output to OUTPUT (default: select.h5).

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work managers
 are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option. Use
 0 for a dedicated server. (Ignored by work managers which do not support this
 option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a deprecated
 synonym for "master" and "client" is a deprecated synonym for "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g. /tmp);
 on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read this
 file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting in
 coordinating the communication of other nodes to choose ports randomly, writing
 that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic toward
 the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result) traffic
 from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker in
 WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

w_states

usage:

w_states [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--show | --append | --replace] [--bstate-file BSTATE_FILE] [--bstate BSTATES]
 [--tstate-file TSTATE_FILE] [--tstate TSTATES]
 [--serial | --parallel | --work-manager WORK_MANAGER] [--n-workers N_WORKERS]
 [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE] [--zmq-write-host-info INFO_FILE]
 [--zmq-read-host-info INFO_FILE] [--zmq-upstream-rr-endpoint ENDPOINT]
 [--zmq-upstream-ann-endpoint ENDPOINT] [--zmq-downstream-rr-endpoint ENDPOINT]
 [--zmq-downstream-ann-endpoint ENDPOINT] [--zmq-master-heartbeat MASTER_HEARTBEAT]
 [--zmq-worker-heartbeat WORKER_HEARTBEAT] [--zmq-timeout-factor FACTOR]
 [--zmq-startup-timeout STARTUP_TIMEOUT] [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Display or manipulate basis (initial) or target (recycling) states for a WEST simulation. By default,
states are displayed (or dumped to files). If --replace is specified, all basis/target states are
replaced for the next iteration. If --append is specified, the given target state(s) are appended to
the list for the next iteration. Appending basis states is not permitted, as this would require
renormalizing basis state probabilities in ways that may be error-prone. Instead, use w_states --show
--bstate-file=bstates.txt and then edit the resulting bstates.txt file to include the new desired
basis states, then use w_states --replace --bstate-file=bstates.txt to update the WEST HDF5 file
appropriately.

optional arguments:

-h, --help show this help message and exit
--bstate-file BSTATE_FILE
 Read (--append/--replace) or write (--show) basis state names, probabilities, and
 data references from/to BSTATE_FILE.
--bstate BSTATES Add the given basis state (specified as a string 'label,probability[,auxref]') to
 the list of basis states (after those specified in --bstate-file, if any). This
 argument may be specified more than once, in which case the given states are
 appended in the order they are given on the command line.
--tstate-file TSTATE_FILE
 Read (--append/--replace) or write (--show) target state names and representative
 progress coordinates from/to TSTATE_FILE
--tstate TSTATES Add the given target state (specified as a string 'label,pcoord0[,pcoord1[,...]]')
 to the list of target states (after those specified in the file given by
 --tstates-from, if any). This argument may be specified more than once, in which
 case the given states are appended in the order they appear on the command line.

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

modes of operation:

--show Display current basis/target states (or dump to files).
--append Append the given basis/target states to those currently in use.
--replace Replace current basis/target states with those specified.

parallelization options:

--serial run in serial mode
--parallel run in parallel mode (using processes)
--work-manager WORK_MANAGER
 use the given work manager for parallel task distribution. Available work managers
 are ('serial', 'threads', 'processes', 'zmq'); default is 'serial'
--n-workers N_WORKERS
 Use up to N_WORKERS on this host, for work managers which support this option. Use
 0 for a dedicated server. (Ignored by work managers which do not support this
 option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a deprecated
 synonym for "master" and "client" is a deprecated synonym for "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g. /tmp);
 on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read this
 file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting in
 coordinating the communication of other nodes to choose ports randomly, writing
 that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic toward
 the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result) traffic
 from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker in
 WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

w_eddist

usage:

w_eddist [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 [--max-queue-length MAX_QUEUE_LENGTH] [-b BINEXPR] [-C] [--loose] --istate ISTATE
 --fstate FSTATE [--first-iter ITER_START] [--last-iter ITER_STOP] [-k KINETICS]
 [-o OUTPUT] [--serial | --parallel | --work-manager WORK_MANAGER]
 [--n-workers N_WORKERS] [--zmq-mode MODE] [--zmq-comm-mode COMM_MODE]
 [--zmq-write-host-info INFO_FILE] [--zmq-read-host-info INFO_FILE]
 [--zmq-upstream-rr-endpoint ENDPOINT] [--zmq-upstream-ann-endpoint ENDPOINT]
 [--zmq-downstream-rr-endpoint ENDPOINT] [--zmq-downstream-ann-endpoint ENDPOINT]
 [--zmq-master-heartbeat MASTER_HEARTBEAT] [--zmq-worker-heartbeat WORKER_HEARTBEAT]
 [--zmq-timeout-factor FACTOR] [--zmq-startup-timeout STARTUP_TIMEOUT]
 [--zmq-shutdown-timeout SHUTDOWN_TIMEOUT]

Calculate time-resolved transition-event duration distribution from kinetics results

Source data

Source data is collected from the results of ‘w_kinetics trace’ (see w_kinetics trace –help for
more information on generating this dataset).

Histogram binning

By default, histograms are constructed with 100 bins in each dimension. This
can be overridden by specifying -b/–bins, which accepts a number of different
kinds of arguments:

a single integer N
 N uniformly spaced bins will be used in each dimension.

a sequence of integers N1,N2,... (comma-separated)
 N1 uniformly spaced bins will be used for the first dimension, N2 for the
 second, and so on.

a list of lists [[B11, B12, B13, ...], [B21, B22, B23, ...], ...]
 The bin boundaries B11, B12, B13, ... will be used for the first dimension,
 B21, B22, B23, ... for the second dimension, and so on. These bin
 boundaries need not be uniformly spaced. These expressions will be
 evaluated with Python's ``eval`` construct, with ``np`` available for
 use [e.g. to specify bins using np.arange()].

The first two forms (integer, list of integers) will trigger a scan of all
data in each dimension in order to determine the minimum and maximum values,
which may be very expensive for large datasets. This can be avoided by
explicitly providing bin boundaries using the list-of-lists form.

Note that these bins are NOT at all related to the bins used to drive WE
sampling.

Output format

The output file produced (specified by -o/–output, defaulting to “pdist.h5”)
may be fed to plothist to generate plots (or appropriately processed text or
HDF5 files) from this data. In short, the following datasets are created:

``histograms``
 Normalized histograms. The first axis corresponds to iteration, and
 remaining axes correspond to dimensions of the input dataset.

``/binbounds_0``
 Vector of bin boundaries for the first (index 0) dimension. Additional
 datasets similarly named (/binbounds_1, /binbounds_2, ...) are created
 for additional dimensions.

``/midpoints_0``
 Vector of bin midpoints for the first (index 0) dimension. Additional
 datasets similarly named are created for additional dimensions.

``n_iter``
 Vector of iteration numbers corresponding to the stored histograms (i.e.
 the first axis of the ``histograms`` dataset).

Subsequent processing

The output generated by this program (-o/–output, default “pdist.h5”) may be
plotted by the plothist program. See plothist --help for more
information.

Parallelization

This tool supports parallelized binning, including reading of input data.
Parallel processing is the default. For simple cases (reading pre-computed
input data, modest numbers of segments), serial processing (–serial) may be
more efficient.

Command-line options

optional arguments:

-h, --help show this help message and exit
-b BINEXPR, --bins BINEXPR
 Use BINEXPR for bins. This may be an integer, which will be used for each
 dimension of the progress coordinate; a list of integers (formatted as
 [n1,n2,...]) which will use n1 bins for the first dimension, n2 for the second
 dimension, and so on; or a list of lists of boundaries (formatted as [[a1, a2,
 ...], [b1, b2, ...], ...]), which will use [a1, a2, ...] as bin boundaries for
 the first dimension, [b1, b2, ...] as bin boundaries for the second dimension,
 and so on. (Default: 100 bins in each dimension.)
-C, --compress Compress histograms. May make storage of higher-dimensional histograms more
 tractable, at the (possible extreme) expense of increased analysis time.
 (Default: no compression.)
--loose Ignore values that do not fall within bins. (Risky, as this can make buggy bin
 boundaries appear as reasonable data. Only use if you are sure of your bin
 boundary specification.)
--istate ISTATE Initial state defining transition event
--fstate FSTATE Final state defining transition event

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

	parallelization options:
	
	--max-queue-length MAX_QUEUE_LENGTH

	Maximum number of tasks that can be queued. Useful to limit RAM use for tasks
that have very large requests/response. Default: no limit.

iteration range options:

--first-iter ITER_START
 Iteration to begin analysis (default: 1)
--last-iter ITER_STOP
 Iteration to end analysis

input/output options:

-k KINETICS, --kinetics KINETICS
 Populations and transition rates (including evolution) are stored in KINETICS
 (default: kintrace.h5).
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: eddist.h5).

	parallelization options:
	
	--serial

	run in serial mode

	--parallel

	run in parallel mode (using processes)

	--work-manager WORK_MANAGER

	use the given work manager for parallel task distribution. Available work
managers are (‘serial’, ‘threads’, ‘processes’, ‘zmq’); default is ‘processes’

	--n-workers N_WORKERS

	Use up to N_WORKERS on this host, for work managers which support this option.
Use 0 for a dedicated server. (Ignored by work managers which do not support
this option.)

options for ZeroMQ (“zmq”) work manager (master or node):

--zmq-mode MODE Operate as a master (server) or a node (workers/client). "server" is a
 deprecated synonym for "master" and "client" is a deprecated synonym for
 "node".
--zmq-comm-mode COMM_MODE
 Use the given communication mode -- TCP or IPC (Unix-domain) -- sockets for
 communication within a node. IPC (the default) may be more efficient but is not
 available on (exceptionally rare) systems without node-local storage (e.g.
 /tmp); on such systems, TCP may be used instead.
--zmq-write-host-info INFO_FILE
 Store hostname and port information needed to connect to this instance in
 INFO_FILE. This allows the master and nodes assisting in coordinating the
 communication of other nodes to choose ports randomly. Downstream nodes read
 this file with --zmq-read-host-info and know where how to connect.
--zmq-read-host-info INFO_FILE
 Read hostname and port information needed to connect to the master (or other
 coordinating node) from INFO_FILE. This allows the master and nodes assisting
 in coordinating the communication of other nodes to choose ports randomly,
 writing that information with --zmq-write-host-info for this instance to read.
--zmq-upstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint to which to send request/response (task and result) traffic
 toward the master.
--zmq-upstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to receive announcement (heartbeat and shutdown
 notification) traffic from the master.
--zmq-downstream-rr-endpoint ENDPOINT
 ZeroMQ endpoint on which to listen for request/response (task and result)
 traffic from subsidiary workers.
--zmq-downstream-ann-endpoint ENDPOINT
 ZeroMQ endpoint on which to send announcement (heartbeat and shutdown
 notification) traffic toward workers.
--zmq-master-heartbeat MASTER_HEARTBEAT
 Every MASTER_HEARTBEAT seconds, the master announces its presence to workers.
--zmq-worker-heartbeat WORKER_HEARTBEAT
 Every WORKER_HEARTBEAT seconds, workers announce their presence to the master.
--zmq-timeout-factor FACTOR
 Scaling factor for heartbeat timeouts. If the master doesn't hear from a worker
 in WORKER_HEARTBEAT*FACTOR, the worker is assumed to have crashed. If a worker
 doesn't hear from the master in MASTER_HEARTBEAT*FACTOR seconds, the master is
 assumed to have crashed. Both cases result in shutdown.
--zmq-startup-timeout STARTUP_TIMEOUT
 Amount of time (in seconds) to wait for communication between the master and at
 least one worker. This may need to be changed on very large, heavily-loaded
 computer systems that start all processes simultaneously.
--zmq-shutdown-timeout SHUTDOWN_TIMEOUT
 Amount of time (in seconds) to wait for workers to shut down.

w_ntop

usage:

w_ntop [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version] [-W WEST_H5FILE]
 [--first-iter N_ITER] [--last-iter N_ITER] [-a ASSIGNMENTS] [-n COUNT] [-t TIMEPOINT]
 [--highweight | --lowweight | --random] [-o OUTPUT]

Select walkers from bins . An assignment file mapping walkers to
bins at each timepoint is required (see``w_assign –help`` for further
information on generating this file). By default, high-weight walkers are
selected (hence the name w_ntop: select the N top-weighted walkers from
each bin); however, minimum weight walkers and randomly-selected walkers
may be selected instead.

Output format

The output file (-o/–output, by default “ntop.h5”) contains the following
datasets:

``/n_iter`` [iteration]
 (Integer) Iteration numbers for each entry in other datasets.

``/n_segs`` [iteration][bin]
 (Integer) Number of segments in each bin/state in the given iteration.
 This will generally be the same as the number requested with
 ``--n/--count`` but may be smaller if the requested number of walkers
 does not exist.

``/seg_ids`` [iteration][bin][segment]
 (Integer) Matching segments in each iteration for each bin.
 For an iteration ``n_iter``, only the first ``n_iter`` entries are
 valid. For example, the full list of matching seg_ids in bin 0 in the
 first stored iteration is ``seg_ids[0][0][:n_segs[0]]``.

``/weights`` [iteration][bin][segment]
 (Floating-point) Weights for each matching segment in ``/seg_ids``.

Command-line arguments

optional arguments:

-h, --help show this help message and exit
--highweight Select COUNT highest-weight walkers from each bin.
--lowweight Select COUNT lowest-weight walkers from each bin.
--random Select COUNT walkers randomly from each bin.

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).

input options:

-a ASSIGNMENTS, --assignments ASSIGNMENTS
 Use assignments from the given ASSIGNMENTS file (default: assign.h5).

selection options:

-n COUNT, --count COUNT
 Select COUNT walkers from each iteration for each bin (default: 1).
-t TIMEPOINT, --timepoint TIMEPOINT
 Base selection on the given TIMEPOINT within each iteration. Default (-1)
 corresponds to the last timepoint.

output options:

-o OUTPUT, --output OUTPUT
 Write output to OUTPUT (default: ntop.h5).

plothist

Plothist:

	 plothist instant

	 plothist average

	 plothist evolution

usage:

plothist [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 {help,instant,average,evolution} ...

Plot probability density functions (histograms) generated by w_pdist or other
programs conforming to the same output format. This program operates in one of
three modes:

instant
 Plot 1-D and 2-D histograms for an individual iteration. See
 ``plothist instant --help`` for more information.

average
 Plot 1-D and 2-D histograms, averaged over several iterations. See
 ``plothist average --help`` for more information.

evolution
 Plot the time evolution 1-D histograms as waterfall (heat map) plots.
 See ``plothist evolution --help`` for more information.

This program takes the output of w_pdist as input (see w_pdist --help
for more information), and can generate any kind of graphical output that
matplotlib supports.

Command-line options

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

plotting modes:

{help,instant,average,evolution}
 help print help for this command or individual subcommands
 instant plot probability distribution for a single WE iteration
 average plot average of a probability distribution over a WE simulation
 evolution plot evolution of a probability distribution over the course of a WE simulation

plothist_instant

usage:

plothist instant [-h] [-o PLOT_OUTPUT] [--hdf5-output HDF5_OUTPUT] [--plot-contour]
 [--title TITLE] [--linear | --energy | --zero-energy E | --log10]
 [--range RANGE] [--postprocess-function POSTPROCESS_FUNCTION]
 [--text-output TEXT_OUTPUT] [--iter N_ITER]
 input [DIMENSION] [ADDTLDIM]

Plot a probability distribution for a single WE iteration. The probability
distribution must have been previously extracted with w_pdist (or, at
least, must be compatible with the output format of w_pdist; see
w_pdist --help for more information).

optional arguments:

-h, --help show this help message and exit

input options:

input HDF5 file containing histogram data
DIMENSION Plot for the given DIMENSION, specified as INT[:[LB,UB]:LABEL], where INT is a
 zero-based integer identifying the dimension in the histogram, LB and UB are
 lower and upper bounds for plotting, and LABEL is the label for the plot axis.
 (Default: dimension 0, full range.)
ADDTLDIM For instantaneous/average plots, plot along the given additional dimension,
 producing a color map.
--iter N_ITER Plot distribution for iteration N_ITER (default: last completed iteration).

output options:

-o PLOT_OUTPUT, --output PLOT_OUTPUT, --plot-output PLOT_OUTPUT
 Store plot as PLOT_OUTPUT. This may be set to an empty string (e.g. --plot-
 output='') to suppress plotting entirely. The output format is determined by
 filename extension (and thus defaults to PDF). Default: "hist.pdf".
--hdf5-output HDF5_OUTPUT
 Store plot data in the HDF5 file HDF5_OUTPUT.
--plot-contour Determines whether or not to superimpose a contour plot over the heatmap for 2D
 objects.
--text-output TEXT_OUTPUT
 Store plot data in a text format at TEXT_OUTPUT. This option is only valid for
 1-D histograms. (Default: no text output.)

plot options:

--title TITLE Include TITLE as the top-of-graph title
--linear Plot the histogram on a linear scale.
--energy Plot the histogram on an inverted natural log scale, corresponding to (free)
 energy (default).
--zero-energy E Set the zero of energy to E, which may be a scalar, "min" or "max"
--log10 Plot the histogram on a base-10 log scale.
--range RANGE Plot histogram ordinates over the given RANGE, specified as "LB,UB", where LB
 and UB are the lower and upper bounds, respectively. For 1-D plots, this is the
 Y axis. For 2-D plots, this is the colorbar axis. (Default: full range.)
--postprocess-function POSTPROCESS_FUNCTION
 Names a function (as in module.function) that will be called just prior to
 saving the plot. The function will be called as ``postprocess(hist, midpoints,
 binbounds)`` where ``hist`` is the histogram that was plotted, ``midpoints`` is
 the bin midpoints for each dimension, and ``binbounds`` is the bin boundaries
 for each dimension for 2-D plots, or None otherwise. The plot must be modified
 in place using the pyplot stateful interface.

plothist_average

usage:

plothist average [-h] [-o PLOT_OUTPUT] [--hdf5-output HDF5_OUTPUT] [--plot-contour]
 [--title TITLE] [--linear | --energy | --zero-energy E | --log10]
 [--range RANGE] [--postprocess-function POSTPROCESS_FUNCTION]
 [--text-output TEXT_OUTPUT] [--first-iter N_ITER] [--last-iter N_ITER]
 input [DIMENSION] [ADDTLDIM]

Plot a probability distribution averaged over multiple iterations. The
probability distribution must have been previously extracted with w_pdist
(or, at least, must be compatible with the output format of w_pdist; see
w_pdist --help for more information).

optional arguments:

-h, --help show this help message and exit

input options:

input HDF5 file containing histogram data
DIMENSION Plot for the given DIMENSION, specified as INT[:[LB,UB]:LABEL], where INT is a
 zero-based integer identifying the dimension in the histogram, LB and UB are
 lower and upper bounds for plotting, and LABEL is the label for the plot axis.
 (Default: dimension 0, full range.)
ADDTLDIM For instantaneous/average plots, plot along the given additional dimension,
 producing a color map.
--first-iter N_ITER Begin averaging at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude averaging with N_ITER, inclusive (default: last completed iteration).

output options:

-o PLOT_OUTPUT, --output PLOT_OUTPUT, --plot-output PLOT_OUTPUT
 Store plot as PLOT_OUTPUT. This may be set to an empty string (e.g. --plot-
 output='') to suppress plotting entirely. The output format is determined by
 filename extension (and thus defaults to PDF). Default: "hist.pdf".
--hdf5-output HDF5_OUTPUT
 Store plot data in the HDF5 file HDF5_OUTPUT.
--plot-contour Determines whether or not to superimpose a contour plot over the heatmap for 2D
 objects.
--text-output TEXT_OUTPUT
 Store plot data in a text format at TEXT_OUTPUT. This option is only valid for
 1-D histograms. (Default: no text output.)

plot options:

--title TITLE Include TITLE as the top-of-graph title
--linear Plot the histogram on a linear scale.
--energy Plot the histogram on an inverted natural log scale, corresponding to (free)
 energy (default).
--zero-energy E Set the zero of energy to E, which may be a scalar, "min" or "max"
--log10 Plot the histogram on a base-10 log scale.
--range RANGE Plot histogram ordinates over the given RANGE, specified as "LB,UB", where LB
 and UB are the lower and upper bounds, respectively. For 1-D plots, this is the
 Y axis. For 2-D plots, this is the colorbar axis. (Default: full range.)
--postprocess-function POSTPROCESS_FUNCTION
 Names a function (as in module.function) that will be called just prior to
 saving the plot. The function will be called as ``postprocess(hist, midpoints,
 binbounds)`` where ``hist`` is the histogram that was plotted, ``midpoints`` is
 the bin midpoints for each dimension, and ``binbounds`` is the bin boundaries
 for each dimension for 2-D plots, or None otherwise. The plot must be modified
 in place using the pyplot stateful interface.

plothist_evolution

usage:

plothist evolution [-h] [-o PLOT_OUTPUT] [--hdf5-output HDF5_OUTPUT] [--plot-contour]
 [--title TITLE] [--linear | --energy | --zero-energy E | --log10]
 [--range RANGE] [--postprocess-function POSTPROCESS_FUNCTION]
 [--first-iter N_ITER] [--last-iter N_ITER] [--step-iter STEP]
 input [DIMENSION]

Plot a probability distribution as it evolves over iterations. The
probability distribution must have been previously extracted with w_pdist
(or, at least, must be compatible with the output format of w_pdist; see
w_pdist --help for more information).

optional arguments:

-h, --help show this help message and exit

input options:

input HDF5 file containing histogram data
DIMENSION Plot for the given DIMENSION, specified as INT[:[LB,UB]:LABEL], where INT is a
 zero-based integer identifying the dimension in the histogram, LB and UB are
 lower and upper bounds for plotting, and LABEL is the label for the plot axis.
 (Default: dimension 0, full range.)
--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).
--step-iter STEP Average in blocks of STEP iterations.

output options:

-o PLOT_OUTPUT, --output PLOT_OUTPUT, --plot-output PLOT_OUTPUT
 Store plot as PLOT_OUTPUT. This may be set to an empty string (e.g. --plot-
 output='') to suppress plotting entirely. The output format is determined by
 filename extension (and thus defaults to PDF). Default: "hist.pdf".
--hdf5-output HDF5_OUTPUT
 Store plot data in the HDF5 file HDF5_OUTPUT.
--plot-contour Determines whether or not to superimpose a contour plot over the heatmap for 2D
 objects.

plot options:

--title TITLE Include TITLE as the top-of-graph title
--linear Plot the histogram on a linear scale.
--energy Plot the histogram on an inverted natural log scale, corresponding to (free)
 energy (default).
--zero-energy E Set the zero of energy to E, which may be a scalar, "min" or "max"
--log10 Plot the histogram on a base-10 log scale.
--range RANGE Plot histogram ordinates over the given RANGE, specified as "LB,UB", where LB
 and UB are the lower and upper bounds, respectively. For 1-D plots, this is the
 Y axis. For 2-D plots, this is the colorbar axis. (Default: full range.)
--postprocess-function POSTPROCESS_FUNCTION
 Names a function (as in module.function) that will be called just prior to
 saving the plot. The function will be called as ``postprocess(hist, midpoints,
 binbounds)`` where ``hist`` is the histogram that was plotted, ``midpoints`` is
 the bin midpoints for each dimension, and ``binbounds`` is the bin boundaries
 for each dimension for 2-D plots, or None otherwise. The plot must be modified
 in place using the pyplot stateful interface.

ploterr

usage:

ploterrs [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
 {help,d.kinetics,d.probs,rw.probs,rw.kinetics,generic} ...

Plots error ranges for weighted ensemble datasets.

Command-line options

optional arguments:

-h, --help show this help message and exit

general options:

-r RCFILE, --rcfile RCFILE
 use RCFILE as the WEST run-time configuration file (default: west.cfg)
--quiet emit only essential information
--verbose emit extra information
--debug enable extra checks and emit copious information
--version show program's version number and exit

supported input formats:

{help,d.kinetics,d.probs,rw.probs,rw.kinetics,generic}
 help print help for this command or individual subcommands
 d.kinetics output of w_direct kinetics
 d.probs output of w_direct probs
 rw.probs output of w_reweight probs
 rw.kinetics output of w_reweight kinetics
 generic arbitrary HDF5 file and dataset

w_kinavg

WARNING: w_kinavg is being deprecated. Please use w_direct instead.

usage:

w_kinavg trace [-h] [-W WEST_H5FILE] [--first-iter N_ITER] [--last-iter N_ITER] [--step-iter STEP]
 [-a ASSIGNMENTS] [-o OUTPUT] [-k KINETICS] [--disable-bootstrap] [--disable-correl]
 [--alpha ALPHA] [--autocorrel-alpha ACALPHA] [--nsets NSETS]
 [-e {cumulative,blocked,none}] [--window-frac WINDOW_FRAC] [--disable-averages]

Calculate average rates/fluxes and associated errors from weighted ensemble
data. Bin assignments (usually “assign.h5”) and kinetics data (usually
“direct.h5”) data files must have been previously generated (see
“w_assign –help” and “w_direct init –help” for information on
generating these files).

The evolution of all datasets may be calculated, with or without confidence
intervals.

Output format

The output file (-o/–output, usually “direct.h5”) contains the following
dataset:

/avg_rates [state,state]
 (Structured -- see below) State-to-state rates based on entire window of
 iterations selected.

/avg_total_fluxes [state]
 (Structured -- see below) Total fluxes into each state based on entire
 window of iterations selected.

/avg_conditional_fluxes [state,state]
 (Structured -- see below) State-to-state fluxes based on entire window of
 iterations selected.

If –evolution-mode is specified, then the following additional datasets are
available:

/rate_evolution [window][state][state]
 (Structured -- see below). State-to-state rates based on windows of
 iterations of varying width. If --evolution-mode=cumulative, then
 these windows all begin at the iteration specified with
 --start-iter and grow in length by --step-iter for each successive
 element. If --evolution-mode=blocked, then these windows are all of
 width --step-iter (excluding the last, which may be shorter), the first
 of which begins at iteration --start-iter.

/target_flux_evolution [window,state]
 (Structured -- see below). Total flux into a given macro state based on
 windows of iterations of varying width, as in /rate_evolution.

/conditional_flux_evolution [window,state,state]
 (Structured -- see below). State-to-state fluxes based on windows of
 varying width, as in /rate_evolution.

The structure of these datasets is as follows:

iter_start
 (Integer) Iteration at which the averaging window begins (inclusive).

iter_stop
 (Integer) Iteration at which the averaging window ends (exclusive).

expected
 (Floating-point) Expected (mean) value of the observable as evaluated within
 this window, in units of inverse tau.

ci_lbound
 (Floating-point) Lower bound of the confidence interval of the observable
 within this window, in units of inverse tau.

ci_ubound
 (Floating-point) Upper bound of the confidence interval of the observable
 within this window, in units of inverse tau.

stderr
 (Floating-point) The standard error of the mean of the observable
 within this window, in units of inverse tau.

corr_len
 (Integer) Correlation length of the observable within this window, in units
 of tau.

Each of these datasets is also stamped with a number of attributes:

mcbs_alpha
 (Floating-point) Alpha value of confidence intervals. (For example,
 alpha=0.05 corresponds to a 95% confidence interval.)

mcbs_nsets
 (Integer) Number of bootstrap data sets used in generating confidence
 intervals.

mcbs_acalpha
 (Floating-point) Alpha value for determining correlation lengths.

Command-line options

optional arguments:

-h, --help show this help message and exit

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).
--step-iter STEP Analyze/report in blocks of STEP iterations.

input/output options:

-a ASSIGNMENTS, --assignments ASSIGNMENTS
 Bin assignments and macrostate definitions are in ASSIGNMENTS (default:
 assign.h5).
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: kinavg.h5).

input/output options:

-k KINETICS, --kinetics KINETICS
 Populations and transition rates are stored in KINETICS (default: kintrace.h5).

confidence interval calculation options:

--disable-bootstrap, -db
 Enable the use of Monte Carlo Block Bootstrapping.
--disable-correl, -dc
 Disable the correlation analysis.
--alpha ALPHA Calculate a (1-ALPHA) confidence interval' (default: 0.05)
--autocorrel-alpha ACALPHA
 Evaluate autocorrelation to (1-ACALPHA) significance. Note that too small an
 ACALPHA will result in failure to detect autocorrelation in a noisy flux signal.
 (Default: same as ALPHA.)
--nsets NSETS Use NSETS samples for bootstrapping (default: chosen based on ALPHA)

calculation options:

-e {cumulative,blocked,none}, --evolution-mode {cumulative,blocked,none}
 How to calculate time evolution of rate estimates. ``cumulative`` evaluates rates
 over windows starting with --start-iter and getting progressively wider to --stop-
 iter by steps of --step-iter. ``blocked`` evaluates rates over windows of width
 --step-iter, the first of which begins at --start-iter. ``none`` (the default)
 disables calculation of the time evolution of rate estimates.
--window-frac WINDOW_FRAC
 Fraction of iterations to use in each window when running in ``cumulative`` mode.
 The (1 - frac) fraction of iterations will be discarded from the start of each
 window.

misc options:

--disable-averages, -da
 Whether or not the averages should be printed to the console (set to FALSE if flag
 is used).

w_kinetics

WARNING: w_kinetics is being deprecated. Please use w_direct instead.

usage:

w_kinetics trace [-h] [-W WEST_H5FILE] [--first-iter N_ITER] [--last-iter N_ITER]
 [--step-iter STEP] [-a ASSIGNMENTS] [-o OUTPUT]

Calculate state-to-state rates and transition event durations by tracing
trajectories.

A bin assignment file (usually “assign.h5”) including trajectory labeling
is required (see “w_assign –help” for information on generating this file).

This subcommand for w_direct is used as input for all other w_direct
subcommands, which will convert the flux data in the output file into
average rates/fluxes/populations with confidence intervals.

Output format

The output file (-o/–output, by default “direct.h5”) contains the
following datasets:

``/conditional_fluxes`` [iteration][state][state]
 (Floating-point) Macrostate-to-macrostate fluxes. These are **not**
 normalized by the population of the initial macrostate.

``/conditional_arrivals`` [iteration][stateA][stateB]
 (Integer) Number of trajectories arriving at state *stateB* in a given
 iteration, given that they departed from *stateA*.

``/total_fluxes`` [iteration][state]
 (Floating-point) Total flux into a given macrostate.

``/arrivals`` [iteration][state]
 (Integer) Number of trajectories arriving at a given state in a given
 iteration, regardless of where they originated.

``/duration_count`` [iteration]
 (Integer) The number of event durations recorded in each iteration.

``/durations`` [iteration][event duration]
 (Structured -- see below) Event durations for transition events ending
 during a given iteration. These are stored as follows:

 istate
 (Integer) Initial state of transition event.
 fstate
 (Integer) Final state of transition event.
 duration
 (Floating-point) Duration of transition, in units of tau.
 weight
 (Floating-point) Weight of trajectory at end of transition, **not**
 normalized by initial state population.

Because state-to-state fluxes stored in this file are not normalized by
initial macrostate population, they cannot be used as rates without further
processing. The w_direct kinetics command is used to perform this normalization
while taking statistical fluctuation and correlation into account. See
w_direct kinetics --help for more information. Target fluxes (total flux
into a given state) require no such normalization.

Command-line options

optional arguments:

-h, --help show this help message and exit

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).
--step-iter STEP Analyze/report in blocks of STEP iterations.

input/output options:

-a ASSIGNMENTS, --assignments ASSIGNMENTS
 Bin assignments and macrostate definitions are in ASSIGNMENTS (default:
 assign.h5).
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: kintrace.h5).

w_stateprobs

WARNING: w_stateprobs is being deprecated. Please use w_direct instead.

usage:

w_stateprobs trace [-h] [-W WEST_H5FILE] [--first-iter N_ITER] [--last-iter N_ITER]
 [--step-iter STEP] [-a ASSIGNMENTS] [-o OUTPUT] [-k KINETICS]
 [--disable-bootstrap] [--disable-correl] [--alpha ALPHA]
 [--autocorrel-alpha ACALPHA] [--nsets NSETS] [-e {cumulative,blocked,none}]
 [--window-frac WINDOW_FRAC] [--disable-averages]

Calculate average populations and associated errors in state populations from
weighted ensemble data. Bin assignments, including macrostate definitions,
are required. (See “w_assign –help” for more information).

Output format

The output file (-o/–output, usually “direct.h5”) contains the following
dataset:

/avg_state_probs [state]
 (Structured -- see below) Population of each state across entire
 range specified.

/avg_color_probs [state]
 (Structured -- see below) Population of each ensemble across entire
 range specified.

If –evolution-mode is specified, then the following additional datasets are
available:

/state_pop_evolution [window][state]
 (Structured -- see below). State populations based on windows of
 iterations of varying width. If --evolution-mode=cumulative, then
 these windows all begin at the iteration specified with
 --start-iter and grow in length by --step-iter for each successive
 element. If --evolution-mode=blocked, then these windows are all of
 width --step-iter (excluding the last, which may be shorter), the first
 of which begins at iteration --start-iter.

/color_prob_evolution [window][state]
 (Structured -- see below). Ensemble populations based on windows of
 iterations of varying width. If --evolution-mode=cumulative, then
 these windows all begin at the iteration specified with
 --start-iter and grow in length by --step-iter for each successive
 element. If --evolution-mode=blocked, then these windows are all of
 width --step-iter (excluding the last, which may be shorter), the first
 of which begins at iteration --start-iter.

The structure of these datasets is as follows:

iter_start
 (Integer) Iteration at which the averaging window begins (inclusive).

iter_stop
 (Integer) Iteration at which the averaging window ends (exclusive).

expected
 (Floating-point) Expected (mean) value of the observable as evaluated within
 this window, in units of inverse tau.

ci_lbound
 (Floating-point) Lower bound of the confidence interval of the observable
 within this window, in units of inverse tau.

ci_ubound
 (Floating-point) Upper bound of the confidence interval of the observable
 within this window, in units of inverse tau.

stderr
 (Floating-point) The standard error of the mean of the observable
 within this window, in units of inverse tau.

corr_len
 (Integer) Correlation length of the observable within this window, in units
 of tau.

Each of these datasets is also stamped with a number of attributes:

mcbs_alpha
 (Floating-point) Alpha value of confidence intervals. (For example,
 alpha=0.05 corresponds to a 95% confidence interval.)

mcbs_nsets
 (Integer) Number of bootstrap data sets used in generating confidence
 intervals.

mcbs_acalpha
 (Floating-point) Alpha value for determining correlation lengths.

Command-line options

optional arguments:

-h, --help show this help message and exit

WEST input data options:

-W WEST_H5FILE, --west-data WEST_H5FILE
 Take WEST data from WEST_H5FILE (default: read from the HDF5 file specified in
 west.cfg).

iteration range:

--first-iter N_ITER Begin analysis at iteration N_ITER (default: 1).
--last-iter N_ITER Conclude analysis with N_ITER, inclusive (default: last completed iteration).
--step-iter STEP Analyze/report in blocks of STEP iterations.

input/output options:

-a ASSIGNMENTS, --assignments ASSIGNMENTS
 Bin assignments and macrostate definitions are in ASSIGNMENTS (default:
 assign.h5).
-o OUTPUT, --output OUTPUT
 Store results in OUTPUT (default: stateprobs.h5).

input/output options:

-k KINETICS, --kinetics KINETICS
 Populations and transition rates are stored in KINETICS (default: assign.h5).

confidence interval calculation options:

--disable-bootstrap, -db
 Enable the use of Monte Carlo Block Bootstrapping.
--disable-correl, -dc
 Disable the correlation analysis.
--alpha ALPHA Calculate a (1-ALPHA) confidence interval' (default: 0.05)
--autocorrel-alpha ACALPHA
 Evaluate autocorrelation to (1-ACALPHA) significance. Note that too small an
 ACALPHA will result in failure to detect autocorrelation in a noisy flux signal.
 (Default: same as ALPHA.)
--nsets NSETS Use NSETS samples for bootstrapping (default: chosen based on ALPHA)

calculation options:

-e {cumulative,blocked,none}, --evolution-mode {cumulative,blocked,none}
 How to calculate time evolution of rate estimates. ``cumulative`` evaluates rates
 over windows starting with --start-iter and getting progressively wider to --stop-
 iter by steps of --step-iter. ``blocked`` evaluates rates over windows of width
 --step-iter, the first of which begins at --start-iter. ``none`` (the default)
 disables calculation of the time evolution of rate estimates.
--window-frac WINDOW_FRAC
 Fraction of iterations to use in each window when running in ``cumulative`` mode.
 The (1 - frac) fraction of iterations will be discarded from the start of each
 window.

misc options:

--disable-averages, -da
 Whether or not the averages should be printed to the console (set to FALSE if flag
 is used).

HDF5 File Schema

WESTPA stores all of its simulation data in the cross-platform, self-describing
HDF5 [http://www.hdfgroup.org/HDF5] file format. This file format can be
read and written by a variety of languages and toolkits, including C/C++,
Fortran, Python, Java, and Matlab [http://www.mathworks.com/help/matlab/ref/hdf5read.html] so that analysis of
weighted ensemble simulations is not tied to using the WESTPA framework. HDF5
files are organized like a filesystem, where arbitrarily-nested groups (i.e.
directories) are used to organize datasets (i.e. files). The excellent HDFView [http://www.hdfgroup.org/hdf-java-html/hdfview/] program may be used to
explore WEST data files.

The canonical file format reference for a given version of the WEST code is
described in src/west/data_manager.py [https://github.com/westpa/westpa/blob/master/src/west/data_manager.py].

Overall structure

/
 #ibstates/
 index
 naming
 bstate_index
 bstate_pcoord
 istate_index
 istate_pcoord
 #tstates/
 index
 bin_topologies/
 index
 pickles
 iterations/
 iter_XXXXXXXX/\|iter_XXXXXXXX/
 auxdata/
 bin_target_counts
 ibstates/
 bstate_index
 bstate_pcoord
 istate_index
 istate_pcoord
 pcoord
 seg_index
 wtgraph
 ...
 summary

The root group (/)

The root of the WEST HDF5 file contains the following entries (where a
trailing “/” denotes a group):

	Name

	Type

	Description

	ibstates/

	Group

	Initial and basis states for this
simulation

	tstates/

	Group

	Target (recycling) states for this
simulation; may be empty

	bin_topologies/

	Group

	Data pertaining to the binning scheme
used in each iteration

	iterations/

	Group

	Iteration data

	summary

	Dataset (1-dimensional,
compound)

	Summary data by iteration

The iteration summary table (/summary)

	Field

	Description

	n_particles

	the total number of walkers in this iteration

	norm

	total probability, for stability monitoring

	min_bin_prob

	smallest probability contained in a bin

	max_bin_prob

	largest probability contained in a bin

	min_seg_prob

	smallest probability carried by a walker

	max_seg_prob

	largest probability carried by a walker

	cputime

	total CPU time (in seconds) spent on propagation for this
iteration

	walltime

	total wallclock time (in seconds) spent on this iteration

	binhash

	a hex string identifying the binning used in this iteration

Per iteration data (/iterations/iter_XXXXXXXX)

Data for each iteration is stored in its own group, named according to the
iteration number and zero-padded out to 8 digits, as in
/iterations/iter_00000001 for iteration 1. This is done solely for
convenience in dealing with the data in external utilities that sort output by
group name lexicographically. The field width is in fact configurable via the
iter_prec configuration entry under data section of the WESTPA
configuration file.

The HDF5 group for each iteration contains the following elements:

	Name

	Type

	Description

	auxdata/

	Group

	All user-defined auxiliary data0
sets

	bin_target_counts

	Dataset (1-dimensional)

	The per-bin target count for the
iteration

	ibstates/

	Group

	Initial and basis state data for
the iteration

	pcoord

	Dataset (3-dimensional)

	Progress coordinate data for the
iteration stored as a (num of
segments, pcoord_len, pcoord_ndim)
array

	seg_index

	Dataset (1-dimensional,
compound)

	Summary data for each segment

	wtgraph

	Dataset (1-dimensional)

	

The segment summary table (/iterations/iter_XXXXXXXX/seg_index)

	Field

	Description

	weight

	Segment weight

	parent_id

	Index of parent

	wtg_n_parents

	

	wtg_offset

	

	cputime

	Total cpu time required to run the segment

	walltime

	Total walltime required to run the segment

	endpoint_type

	

	status

	

Bin Topologies group (/bin_topologies)

Bin topologies used during a WE simulation are stored as a unique hash
identifier and a serialized BinMapper object in python pickle [http://docs.python.org/2/library/pickle.html] format. This group contains
two datasets:

	index: Compound array containing the bin hash and pickle length

	pickle: The pickled BinMapper objects for each unique mapper stored
in a (num unique mappers, max pickled size) array

Checklist

Configuring a WESTPA Simulation

	Files for dynamics propagation

	Have you set up all of the files for propagating the dynamics (e.g. for
GROMACS, the .top, .gro, .mdp, and .ndx files)?

	System implementation (system.py)

	Is self.pcoord_len set to the number of data points that
corresponds to the frequency with which the dynamics engine outputs the
progress coordinate? Note: Many MD engines (e.g. GROMACS) output the
initial point (i.e. zero).

	Are the bins in the expected positions? You can easily view the positions
of the bins using a Python interpreter.

	Initializing the simulation (init.sh)

	Is the directory structure for the trajectory output files
consistent with specifications in the master configuration file
(west.cfg)?

	Are the basis (bstate) states, and if applicable, target states (tstate),
specified correctly?

	Calculating the progress coordinate for initial states (get_pcoord.sh)

	Ensure that the procedure to extract the progress coordinate works by
manually checking the procedure on one (or more) basis state files.

	If your initialization (init.sh) gives an error message indicating the
“incorrect shape” of the progress coordinate, check that get_pcoord.sh is
not writing to a single file. If this is the case, w_init will crash since
multiple threads will be simultaneously writing to a single file. To fix
this issue, you can add $$ to the file name (e.g. change OUT=dist.xvg
to OUT=dist_$$.xvg) in get_pcoord.sh.

	Segment implementation (runseg.sh)

	Ensure that the progress coordinate is being calculated correctly.
If necessary, manually run a single dynamics segment (τ) for a single
trajectory walker to do so (e.g. for GROMACS, run the .tpr file for a
length of τ). Double check that if any analysis programs are being run
that their input is correct.

	Are you feeding the velocities and state information required for the
thermostat and barostat from one dynamics segment to the next? In GROMACS,
this information is stored in the .edr and .trr files.

	Log of simulation progress (west.h5)

	Check that the first iteration has been initialized, i.e. typing:

h5ls west.h5/iterations

at the command line gives:

iter_00000001 Group

	In addition, the progress coordinate should be initialized as well, i.e.
using the command:

h5ls -d west.h5/iterations/iter_00000001/pcoord

shows that the array is populated by zeros and the first point is the value
calculated by get_pcoord.sh:

pcoord Dataset {10, 21, 1}
 Data:
 (0,0,0) 8, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 (2,15,0) 0, 0, 0, 0, 0, 0, 8, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0,
 (5,8,0) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 8, 0, 8, 0,
 (8,2,0) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0

Running a WESTPA simulation

	If you encounter an issue while running the simulation

	Use the --debug option on the servers w_run and save the output to a file.
(note that this will generate a very detailed log of the process, try
searching for “ERROR” for any errors and “iteration” to look at every
iteration)

	Use a program like hdfview, h5ls or Python with h5py library to open the
west.h5 file and ensure that the progress coordinate is being passed
around correctly.

	Use hdfview, h5ls or Python with h5py library to ensure that the number of
trajectory walkers is correct.

	Is your simulation failing while the progress coordinate is being calculated?

	One of the most error prone part during an iteration is the progress
coordinate extraction. Programs that are not designed for quick execution
have a lot of trouble during this step (VMD is a very commonly encountered
one for example). Probably the best way to deal with this issue is to hard
code a script to do the progress coordinate extraction. If you are doing
molecular dynamics simulations multiple libraries for Python and C/C++ that
deal with most output formats for MD packages exist and they usually come
with a lot of convenience functions that can help you extract the progress
coordinate. AMBER tools and GROMACS tools seems to work adequately for this
purpose as well.

	Is your progress coordinate what you think it is?

	Once your simulation it is running, it is well worth your time to ensure
that the progress coordinate being reported is what you think it is. This
can be done in a number of ways:

	Check the seg_log output. This captures the standard error/output from
the terminal session that your segment ran in, assuming you are running the
executable propagator, and can be useful to ensure that everything is being
done as you believe it should be (GROMACS tools, such as g_dist, for
instance, report what groups have their distance being calculated here).

	Look at a structure! Do so in a program such as VMD or pyMOL, and calculate
your progress coordinate manually and check it visually, if feasible. Does
it look correct, and seem to match what’s being reported in the .h5 file?
This is well worth your time before the simulation has proceeded very far,
and can save a significant amount of wallclock and computational time.

Analyzing a WESTPA simulation

	If you are running the analysis on shared computing resources

	Be sure to use the --serial flag (see the individual tool
documentation). Otherwise, many of the included tools default to parallel
mode (w_assign, for instance), which will create as many Python threads as
there are CPU cores available.

Frequently Asked Questions (FAQ)

This page may be outdated, the most recent list of FAQs are available here: [https://github.com/westpa/westpa/wiki/Frequently-Asked-Questions]

Simulation

	How can I cleanly shutdown a simulation (without corrupting the h5
file)?

It is generally safe to shutdown a WESTPA simulation by simply canceling
the job through your queue management. However, to ensure data integrity
in the h5 file, you should wait until the WESTPA log indicates that an
iteration has begun or is occurring; canceling a job too quickly after
submission can result in the absolute corruption of the h5 file and
should be avoided.

	Storage of Large Files

During a normal WESTPA run, many small files are created and it is
convenient to tar these into a larger file (one tarball per iteration,
for instance). It is generally best to do this ‘offline’. An important
aspect to consider is that some disk systems, such as LUSTRE, will
suffer impaired performance if very large files are created. On
Stampede, for instance, any file larger than 200 GB must be ‘striped’
properly (such that its individual bits are spread across numerous
disks).

Within the user guide for such systems, there is generally a section on
how to handle large files. Some computers have special versions of tar
which stripe appropriately; others do not (such as Stampede). For those
that do not, it may be necessary to contact the sysadmin, and/or create
a directory where you can place your tarball with a different stripe
level than the default.

	H5py Inflate() Failed error

While running or analyzing a simulation, you may run into an error such
as IOError: Can't write data (Inflate() failed). These errors may be
related to an open bug in H5py. However, the following tips may help you
to find a workaround.

WESTPA may present you with such an error when unable to read or write a
data set. In the case that a simulation gives this error when you
attempt to run it, it may be helpful to check if a data set may be read
or written to using an interactive Python session. Restarting the
simulation may require deleting and remaking the data set. Also, this
error may be related to compression and other storage options. Thus, it
may be helpful to disable compression and chunked storage. Note that
existing datasets will retain compression and other options given to
them at the time of their creation, so it may be necessary to truncate
an iteration (for example, using w_truncate) in order for changes to
take effect.

This error may also occur during repeated opening (e.g., 1000s of times)
of an HDF5 data set. Thus, this error may occur while running analysis
scripts. In this case, it may be helpful to cache data sets in physical
memory (RAM) as numpy arrays when they are read, so that the script
loads the dataset a minimal number of times.

	Dynamics Packages

WESTPA was designed to work cleanly with any dynamics package available
(using the executable propagator); however, many of the tips and tricks
available on the web or the user manual for these packages make the
(reasonable) assumption that you will be running a set of brute force
trajectories. As such, some of their guidelines for handling periodic
boundary conditions may not be applicable.

	How can I restart a WESTPA simulation?

In general restarting a westpa simulation will restart an incomplete
iteration, retaining data from segments that have completed and
re-running segments that were incomplete (or never started).

In case that the iteration data got corrupted or you want to go
back to an specific iteration and change something, you need to
delete all the trajectory segments and other files related to that
iteration and run w_truncate on that iteration. This will delete westpa’s
information about the nth iteration, which includes which segments have
run and which have not. Then restarting your westpa simulation will
restart that iteration afresh.

GROMACS

	Periodic Boundary Conditions

While many of the built in tools now handle periodic boundary conditions
cleanly (such as g_dist) with relatively little user interaction,
others, such as g_rms, do not. If your simulation analysis protocol
requires you to run such a tool, you must correct for the periodic
boundary conditions before running it. While there are guidelines
available to help you correct for whatever conditions your system may
have
here [http://www.gromacs.org/Documentation/Terminology/Periodic_Boundary_Conditions],
there is an implicit assumption that you have one long running
trajectory.

It will be necessary, within your executable propagator (usually
runseg.sh) to run trjconv (typically, two or three times, depending on
your needs: once to remove the periodic boundary conditions, then to
make molecules whole, then to remove any jumps). If no extra input is
supplied (the -s flag in GROMACS 4.X), GROMACS uses the first frame of
your segment trajectory as a reference state to remove jumps. If your
segment’s parent ended the previous iteration having jumped across the
box barrier, trjconv will erroneously assume this is the correct state
and ‘correct’ any jump back across the barrier. This can result in
unusually high RMSD values for one segment for one or more iterations,
and can show as discontinuities on the probability distribution. It is
important to note that a lack of discontinuities does not imply a lack
of imaging problems.

To fix this, simply pass in the last frame of the imaged parent
trajectory and use that as the reference structure for trjconv. This
will ensure that trjconv is aware if your segment has crossed the
barrier at time 0 and will make the appropriate corrections.

Development

	
	I’m trying to profile a parallel script using the –profile
	option of bin/west. I get a PicklingError. What gives?

When executing a script using –profile, the following error may crop
up:

PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

The cProfile module used by the –profile option modifies function
definitions such that they are no longer pickleable, meaning that they
cannot be passed through the work manager to other processes. If you
absolutely must profile a parallel script, use the threads work manager.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 westpa	

 	
 	
 westpa.analysis.core	

 	
 	
 westpa.analysis.statistics	

 	
 	
 westpa.analysis.trajectories	

 	
 	
 westpa.cli.core.w_fork	

 	
 	
 westpa.cli.core.w_init	

 	
 	
 westpa.cli.core.w_run	

 	
 	
 westpa.cli.core.w_states	

 	
 	
 westpa.cli.core.w_succ	

 	
 	
 westpa.cli.core.w_truncate	

 	
 	
 westpa.cli.tools.ploterr	

 	
 	
 westpa.cli.tools.plothist	

 	
 	
 westpa.cli.tools.w_assign	

 	
 	
 westpa.cli.tools.w_bins	

 	
 	
 westpa.cli.tools.w_crawl	

 	
 	
 westpa.cli.tools.w_direct	

 	
 	
 westpa.cli.tools.w_dumpsegs	

 	
 	
 westpa.cli.tools.w_eddist	

 	
 	
 westpa.cli.tools.w_fluxanl	

 	
 	
 westpa.cli.tools.w_ipa	

 	
 	
 westpa.cli.tools.w_kinavg	

 	
 	
 westpa.cli.tools.w_kinetics	

 	
 	
 westpa.cli.tools.w_multi_west	

 	
 	
 westpa.cli.tools.w_ntop	

 	
 	
 westpa.cli.tools.w_pdist	

 	
 	
 westpa.cli.tools.w_postanalysis_matrix	

 	
 	
 westpa.cli.tools.w_postanalysis_reweight	

 	
 	
 westpa.cli.tools.w_red	

 	
 	
 westpa.cli.tools.w_reweight	

 	
 	
 westpa.cli.tools.w_select	

 	
 	
 westpa.cli.tools.w_stateprobs	

 	
 	
 westpa.cli.tools.w_trace	

 	
 	
 westpa.core	

 	
 	
 westpa.core.binning	

 	
 	
 westpa.core.binning.assign	

 	
 	
 westpa.core.binning.bins	

 	
 	
 westpa.core.binning.mab	

 	
 	
 westpa.core.binning.mab_driver	

 	
 	
 westpa.core.binning.mab_manager	

 	
 	
 westpa.core.data_manager	

 	
 	
 westpa.core.extloader	

 	
 	
 westpa.core.h5io	

 	
 	
 westpa.core.kinetics	

 	
 	
 westpa.core.kinetics.events	

 	
 	
 westpa.core.kinetics.matrates	

 	
 	
 westpa.core.kinetics.rate_averaging	

 	
 	
 westpa.core.progress	

 	
 	
 westpa.core.propagators	

 	
 	
 westpa.core.propagators.executable	

 	
 	
 westpa.core.reweight	

 	
 	
 westpa.core.reweight.matrix	

 	
 	
 westpa.core.segment	

 	
 	
 westpa.core.sim_manager	

 	
 	
 westpa.core.states	

 	
 	
 westpa.core.systems	

 	
 	
 westpa.core.textio	

 	
 	
 westpa.core.we_driver	

 	
 	
 westpa.core.wm_ops	

 	
 	
 westpa.core.yamlcfg	

 	
 	
 westpa.fasthist	

 	
 	
 westpa.mclib	

 	
 	
 westpa.oldtools	

 	
 	
 westpa.oldtools.aframe	

 	
 	
 westpa.oldtools.aframe.atool	

 	
 	
 westpa.oldtools.aframe.base_mixin	

 	
 	
 westpa.oldtools.aframe.binning	

 	
 	
 westpa.oldtools.aframe.data_reader	

 	
 	
 westpa.oldtools.aframe.iter_range	

 	
 	
 westpa.oldtools.aframe.kinetics	

 	
 	
 westpa.oldtools.aframe.mcbs	

 	
 	
 westpa.oldtools.aframe.output	

 	
 	
 westpa.oldtools.aframe.plotting	

 	
 	
 westpa.oldtools.aframe.trajwalker	

 	
 	
 westpa.oldtools.aframe.transitions	

 	
 	
 westpa.oldtools.cmds	

 	
 	
 westpa.oldtools.files	

 	
 	
 westpa.oldtools.miscfn	

 	
 	
 westpa.oldtools.stats	

 	
 	
 westpa.oldtools.stats.accumulator	

 	
 	
 westpa.oldtools.stats.edfs	

 	
 	
 westpa.oldtools.stats.mcbs	

 	
 	
 westpa.tools	

 	
 	
 westpa.tools.binning	

 	
 	
 westpa.tools.core	

 	
 	
 westpa.tools.data_reader	

 	
 	
 westpa.tools.dtypes	

 	
 	
 westpa.tools.iter_range	

 	
 	
 westpa.tools.kinetics_tool	

 	
 	
 westpa.tools.plot	

 	
 	
 westpa.tools.progress	

 	
 	
 westpa.tools.selected_segs	

 	
 	
 westpa.tools.wipi	

 	
 	
 westpa.trajtree	

 	
 	
 westpa.trajtree.trajtree	

 	
 	
 westpa.westext	

 	
 	
 westpa.westext.adaptvoronoi	

 	
 	
 westpa.westext.adaptvoronoi.adaptVor_driver	

 	
 	
 westpa.westext.weed	

 	
 	
 westpa.westext.weed.BinCluster	

 	
 	
 westpa.westext.weed.ProbAdjustEquil	

 	
 	
 westpa.westext.weed.UncertMath	

 	
 	
 westpa.westext.weed.weed_driver	

 	
 	
 westpa.westext.wess	

 	
 	
 westpa.westext.wess.ProbAdjust	

 	
 	
 westpa.westext.wess.wess_driver	

 	
 	
 westpa.work_managers	

 	
 	
 westpa.work_managers.core	

 	
 	
 westpa.work_managers.environment	

 	
 	
 westpa.work_managers.mpi	

 	
 	
 westpa.work_managers.processes	

 	
 	
 westpa.work_managers.serial	

 	
 	
 westpa.work_managers.threads	

 	
 	
 westpa.work_managers.zeromq	

 	
 	
 westpa.work_managers.zeromq.core	

 	
 	
 westpa.work_managers.zeromq.node	

 	
 	
 westpa.work_managers.zeromq.work_manager	

 	
 	
 westpa.work_managers.zeromq.worker	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	accumulate_labeled_populations() (in module westpa.cli.tools.w_assign)

 	(in module westpa.core.binning)

 	accumulate_state_populations_from_labeled() (in module westpa.cli.tools.w_direct)

 	(in module westpa.core.binning)

 	accumulate_statistics() (westpa.cli.tools.w_reweight.RWReweight method)

 	AccuracyError

 	ACK (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	AdaptiveVoronoiDriver (class in westpa.westext.adaptvoronoi)

 	(class in westpa.westext.adaptvoronoi.adaptVor_driver)

 	add() (westpa.tools.selected_segs.AllSegmentSelection method)

 	(westpa.tools.selected_segs.SegmentSelection method)

 	(westpa.trajtree.trajtree.AllSegmentSelection method)

 	(westpa.work_managers.core.FutureWatcher method)

 	add_all_args() (westpa.tools.binning.WESTToolComponent method)

 	(westpa.tools.core.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTToolComponent method)

 	(westpa.tools.iter_range.WESTToolComponent method)

 	(westpa.tools.progress.WESTToolComponent method)

 	(westpa.tools.selected_segs.WESTToolComponent method)

 	(westpa.tools.WESTToolComponent method)

 	add_args() (westpa.cli.core.w_succ.WESTAnalysisTool method)

 	(westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.cli.tools.ploterr.CommonPloterrs method)

 	(westpa.cli.tools.ploterr.DirectKinetics method)

 	(westpa.cli.tools.ploterr.DirectStateprobs method)

 	(westpa.cli.tools.ploterr.GenericIntervalSubcommand method)

 	(westpa.cli.tools.ploterr.ProgressIndicatorComponent method)

 	(westpa.cli.tools.ploterr.WESTMasterCommand method)

 	(westpa.cli.tools.plothist.AveragePlotHist method)

 	(westpa.cli.tools.plothist.EvolutionPlotHist method)

 	(westpa.cli.tools.plothist.InstantPlotHist method)

 	(westpa.cli.tools.plothist.PlotHistBase method)

 	(westpa.cli.tools.plothist.PlotSupports2D method)

 	(westpa.cli.tools.plothist.WESTMasterCommand method)

 	(westpa.cli.tools.w_assign.BinMappingComponent method)

 	(westpa.cli.tools.w_assign.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_assign.WAssign method)

 	(westpa.cli.tools.w_assign.WESTDataReader method)

 	(westpa.cli.tools.w_assign.WESTDSSynthesizer method)

 	(westpa.cli.tools.w_assign.WESTParallelTool method)

 	(westpa.cli.tools.w_bins.BinMappingComponent method)

 	(westpa.cli.tools.w_bins.WBinTool method)

 	(westpa.cli.tools.w_bins.WESTDataReader method)

 	(westpa.cli.tools.w_bins.WESTTool method)

 	(westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_crawl.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_crawl.WCrawl method)

 	(westpa.cli.tools.w_crawl.WESTDataReader method)

 	(westpa.cli.tools.w_crawl.WESTParallelTool method)

 	(westpa.cli.tools.w_direct.AverageCommands method)

 	(westpa.cli.tools.w_direct.WESTKineticsBase method)

 	(westpa.cli.tools.w_direct.WESTMasterCommand method)

 	(westpa.cli.tools.w_direct.WESTParallelTool method)

 	(westpa.cli.tools.w_dumpsegs.WDumpSegs method)

 	(westpa.cli.tools.w_dumpsegs.WESTDataReader method)

 	(westpa.cli.tools.w_dumpsegs.WESTTool method)

 	(westpa.cli.tools.w_eddist.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_eddist.WEDDist method)

 	(westpa.cli.tools.w_eddist.WESTParallelTool method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.WESTDataReader method)

 	(westpa.cli.tools.w_fluxanl.WESTTool method)

 	(westpa.cli.tools.w_fluxanl.WFluxanlTool method)

 	(westpa.cli.tools.w_ipa.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_ipa.WESTDataReader method)

 	(westpa.cli.tools.w_ipa.WESTParallelTool method)

 	(westpa.cli.tools.w_ipa.WIPI method)

 	(westpa.cli.tools.w_kinavg.WESTMasterCommand method)

 	(westpa.cli.tools.w_kinavg.WESTParallelTool method)

 	(westpa.cli.tools.w_kinetics.WESTMasterCommand method)

 	(westpa.cli.tools.w_kinetics.WESTParallelTool method)

 	(westpa.cli.tools.w_multi_west.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_multi_west.WESTMultiTool method)

 	(westpa.cli.tools.w_multi_west.WESTTool method)

 	(westpa.cli.tools.w_multi_west.WMultiWest method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_ntop.WESTDataReader method)

 	(westpa.cli.tools.w_ntop.WESTTool method)

 	(westpa.cli.tools.w_ntop.WNTopTool method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_pdist.WESTDataReader method)

 	(westpa.cli.tools.w_pdist.WESTDSSynthesizer method)

 	(westpa.cli.tools.w_pdist.WESTParallelTool method)

 	(westpa.cli.tools.w_pdist.WESTWDSSynthesizer method)

 	(westpa.cli.tools.w_pdist.WPDist method)

 	(westpa.cli.tools.w_postanalysis_matrix.RWMatrix method)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTMasterCommand method)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTParallelTool method)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTMasterCommand method)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_red.WESTParallelTool method)

 	(westpa.cli.tools.w_reweight.AverageCommands method)

 	(westpa.cli.tools.w_reweight.RWMatrix method)

 	(westpa.cli.tools.w_reweight.RWReweight method)

 	(westpa.cli.tools.w_reweight.WESTKineticsBase method)

 	(westpa.cli.tools.w_reweight.WESTMasterCommand method)

 	(westpa.cli.tools.w_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.cli.tools.w_select.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_select.WESTDataReader method)

 	(westpa.cli.tools.w_select.WESTParallelTool method)

 	(westpa.cli.tools.w_select.WSelectTool method)

 	(westpa.cli.tools.w_stateprobs.WESTMasterCommand method)

 	(westpa.cli.tools.w_stateprobs.WESTParallelTool method)

 	(westpa.cli.tools.w_trace.WESTDataReader method)

 	(westpa.cli.tools.w_trace.WESTTool method)

 	(westpa.cli.tools.w_trace.WTraceTool method)

 	(westpa.oldtools.aframe.AnalysisMixin method)

 	(westpa.oldtools.aframe.atool.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.base_mixin.AnalysisMixin method)

 	(westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.binning.AnalysisMixin method)

 	(westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	(westpa.oldtools.aframe.data_reader.AnalysisMixin method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.ExtDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.ExtDataReaderMixin method)

 	(westpa.oldtools.aframe.iter_range.AnalysisMixin method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.oldtools.aframe.kinetics.AnalysisMixin method)

 	(westpa.oldtools.aframe.kinetics.KineticsAnalysisMixin method)

 	(westpa.oldtools.aframe.KineticsAnalysisMixin method)

 	(westpa.oldtools.aframe.mcbs.AnalysisMixin method)

 	(westpa.oldtools.aframe.mcbs.MCBSMixin method)

 	(westpa.oldtools.aframe.MCBSMixin method)

 	(westpa.oldtools.aframe.output.AnalysisMixin method)

 	(westpa.oldtools.aframe.plotting.AnalysisMixin method)

 	(westpa.oldtools.aframe.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.AnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	(westpa.tools.BinMappingComponent method)

 	(westpa.tools.binning.BinMappingComponent method)

 	(westpa.tools.binning.WESTToolComponent method)

 	(westpa.tools.core.WESTMasterCommand method)

 	(westpa.tools.core.WESTMultiTool method)

 	(westpa.tools.core.WESTParallelTool method)

 	(westpa.tools.core.WESTTool method)

 	(westpa.tools.core.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTDataReader method)

 	(westpa.tools.data_reader.WESTDSSynthesizer method)

 	(westpa.tools.data_reader.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTWDSSynthesizer method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.iter_range.WESTToolComponent method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.AverageCommands method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.ProgressIndicatorComponent method)

 	(westpa.tools.kinetics_tool.WESTDataReader method)

 	(westpa.tools.kinetics_tool.WESTKineticsBase method)

 	(westpa.tools.progress.ProgressIndicatorComponent method)

 	(westpa.tools.progress.WESTToolComponent method)

 	(westpa.tools.ProgressIndicatorComponent method)

 	(westpa.tools.SegSelector method)

 	(westpa.tools.selected_segs.SegSelector method)

 	(westpa.tools.selected_segs.WESTToolComponent method)

 	(westpa.tools.WESTDataReader method)

 	(westpa.tools.WESTDSSynthesizer method)

 	(westpa.tools.WESTMasterCommand method)

 	(westpa.tools.WESTMultiTool method)

 	(westpa.tools.WESTParallelTool method)

 	(westpa.tools.WESTTool method)

 	(westpa.tools.WESTToolComponent method)

 	(westpa.tools.WESTWDSSynthesizer method)

 	
 	add_common_output_args() (westpa.cli.core.w_succ.CommonOutputMixin method)

 	(westpa.oldtools.aframe.CommonOutputMixin method)

 	(westpa.oldtools.aframe.output.CommonOutputMixin method)

 	add_initial_states() (westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.we_driver.WEDriver method)

 	add_mapper() (westpa.core.binning.assign.RecursiveBinMapper method)

 	(westpa.core.binning.RecursiveBinMapper method)

 	add_mcbs_options() (in module westpa.oldtools.stats.mcbs)

 	add_target_count_args() (westpa.cli.tools.w_assign.BinMappingComponent method)

 	(westpa.cli.tools.w_bins.BinMappingComponent method)

 	(westpa.tools.BinMappingComponent method)

 	(westpa.tools.binning.BinMappingComponent method)

 	add_timer() (westpa.work_managers.zeromq.core.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.node.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.work_manager.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.worker.PassiveMultiTimer method)

 	add_to_subparsers() (westpa.cli.tools.ploterr.WESTSubcommand method)

 	(westpa.cli.tools.plothist.WESTSubcommand method)

 	(westpa.tools.core.WESTSubcommand method)

 	(westpa.tools.kinetics_tool.WESTSubcommand method)

 	(westpa.tools.WESTSubcommand method)

 	add_wm_args() (in module westpa.work_managers.environment)

 	(westpa.work_managers.core.WorkManager class method)

 	(westpa.work_managers.environment.WMEnvironment method)

 	(westpa.work_managers.mpi.WorkManager class method)

 	(westpa.work_managers.processes.WorkManager class method)

 	(westpa.work_managers.serial.WorkManager class method)

 	(westpa.work_managers.threads.WorkManager class method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager class method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager class method)

 	(westpa.work_managers.zeromq.ZMQWorkManager class method)

 	alchemicalLambda (westpa.core.h5io.Frames attribute)

 	all_acquired() (westpa.work_managers.core.WMFuture static method)

 	(westpa.work_managers.mpi.WMFuture static method)

 	(westpa.work_managers.processes.WMFuture static method)

 	(westpa.work_managers.serial.WMFuture static method)

 	(westpa.work_managers.threads.WMFuture static method)

 	(westpa.work_managers.zeromq.work_manager.WMFuture static method)

 	all_initial_states (westpa.core.binning.mab_driver.WEDriver property)

 	(westpa.core.we_driver.WEDriver property)

 	AllSegmentSelection (class in westpa.tools.selected_segs)

 	(class in westpa.trajtree.trajtree)

 	analysis_structure() (westpa.cli.tools.w_ipa.WIPI method)

 	AnalysisMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.base_mixin)

 	(class in westpa.oldtools.aframe.binning)

 	(class in westpa.oldtools.aframe.data_reader)

 	(class in westpa.oldtools.aframe.iter_range)

 	(class in westpa.oldtools.aframe.kinetics)

 	(class in westpa.oldtools.aframe.mcbs)

 	(class in westpa.oldtools.aframe.output)

 	(class in westpa.oldtools.aframe.plotting)

 	(class in westpa.oldtools.aframe.transitions)

 	append() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	appendleft() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	application (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	(westpa.core.h5io.HDF5TrajectoryFile property)

 	apply_down() (in module westpa.core.binning.assign)

 	apply_down_argmin_across() (in module westpa.core.binning.assign)

 	arg_flag() (westpa.work_managers.environment.WMEnvironment method)

 	arg_name() (westpa.work_managers.environment.WMEnvironment method)

 	arg_prefix (westpa.work_managers.environment.WMEnvironment attribute)

 	ArgumentError, [1], [2]

 	as_array() (westpa.oldtools.stats.edfs.EDF method)

 	as_completed() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	as_numpy_record() (westpa.cli.core.w_fork.InitialState method)

 	(westpa.cli.core.w_init.BasisState method)

 	(westpa.cli.core.w_states.BasisState method)

 	(westpa.cli.tools.w_trace.InitialState method)

 	(westpa.core.binning.mab_manager.InitialState method)

 	(westpa.core.data_manager.BasisState method)

 	(westpa.core.data_manager.InitialState method)

 	(westpa.core.propagators.executable.BasisState method)

 	(westpa.core.propagators.executable.InitialState method)

 	(westpa.core.sim_manager.InitialState method)

 	(westpa.core.states.BasisState method)

 	(westpa.core.states.InitialState method)

 	(westpa.core.we_driver.InitialState method)

 	assign (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	assign() (westpa.core.binning.assign.FuncBinMapper method)

 	(westpa.core.binning.assign.NopMapper method)

 	(westpa.core.binning.assign.PiecewiseBinMapper method)

 	(westpa.core.binning.assign.RectilinearBinMapper method)

 	(westpa.core.binning.assign.RecursiveBinMapper method)

 	(westpa.core.binning.assign.VectorizingFuncBinMapper method)

 	(westpa.core.binning.assign.VoronoiBinMapper method)

 	(westpa.core.binning.BinlessDriver method)

 	(westpa.core.binning.FuncBinMapper method)

 	(westpa.core.binning.mab.FuncBinMapper method)

 	(westpa.core.binning.mab_driver.MABDriver method)

 	(westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.binning.MABDriver method)

 	(westpa.core.binning.NopMapper method)

 	(westpa.core.binning.PiecewiseBinMapper method)

 	(westpa.core.binning.RectilinearBinMapper method)

 	(westpa.core.binning.RecursiveBinMapper method)

 	(westpa.core.binning.VectorizingFuncBinMapper method)

 	(westpa.core.binning.VoronoiBinMapper method)

 	(westpa.core.systems.NopMapper method)

 	(westpa.core.we_driver.WEDriver method)

 	(westpa.core.yamlcfg.NopMapper method)

 	(westpa.tools.binning.RectilinearBinMapper method)

 	(westpa.westext.adaptvoronoi.adaptVor_driver.VoronoiBinMapper method)

 	assign_and_label() (in module westpa.cli.tools.w_assign)

 	(in module westpa.core.binning)

 	assign_iteration() (westpa.cli.tools.w_assign.WAssign method)

 	assign_to_bins() (westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	assignments_list_to_table() (in module westpa.cli.tools.w_ntop)

 	(in module westpa.core.binning)

 	atom_slice() (westpa.core.h5io.Trajectory method)

 	attrgetter (class in westpa.core.data_manager)

 	aux_data_loader() (in module westpa.core.propagators.executable)

 	auxiliary_data (westpa.analysis.core.Iteration property)

 	(westpa.analysis.core.Walker property)

 	average() (westpa.oldtools.stats.accumulator.RunningStatsAccumulator method)

 	(westpa.oldtools.stats.RunningStatsAccumulator method)

 	AverageCommands (class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_reweight)

 	(class in westpa.tools.kinetics_tool)

 	AveragePlotHist (class in westpa.cli.tools.plothist)

B

 	
 	BasicMDTrajectory (class in westpa.analysis.trajectories)

 	basis_state() (westpa.analysis.core.Iteration method)

 	basis_state_pcoords (westpa.analysis.core.Iteration property)

 	basis_state_summaries (westpa.analysis.core.Iteration property)

 	basis_states (westpa.analysis.core.Iteration property)

 	BasisState (class in westpa.cli.core.w_init)

 	(class in westpa.cli.core.w_states)

 	(class in westpa.core.data_manager)

 	(class in westpa.core.propagators.executable)

 	(class in westpa.core.states)

 	BFDataManager (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.data_reader)

 	BFTransitionAnalysisMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.transitions)

 	Bin (class in westpa.analysis.core)

 	(class in westpa.core.binning)

 	(class in westpa.core.binning.assign)

 	(class in westpa.core.binning.bins)

 	bin() (westpa.analysis.core.Iteration method)

 	bin_labels (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	bin_mapper (westpa.analysis.core.Iteration property)

 	bin_target_counts (westpa.analysis.core.Iteration property)

 	(westpa.core.systems.WESTSystem property)

 	(westpa.core.yamlcfg.YAMLSystem property)

 	
 	BinlessDriver (class in westpa.core.binning)

 	BinlessMapper (class in westpa.core.binning)

 	BinlessSimManager (class in westpa.core.binning)

 	BinMapper (class in westpa.core.binning.assign)

 	BinMappingComponent (class in westpa.cli.tools.w_assign)

 	(class in westpa.cli.tools.w_bins)

 	(class in westpa.tools)

 	(class in westpa.tools.binning)

 	binning_hchunksize (westpa.core.data_manager.WESTDataManager attribute)

 	BinningMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.binning)

 	bins (westpa.analysis.core.Iteration property)

 	bins_from_yaml_dict() (in module westpa.westext.weed.weed_driver)

 	(in module westpa.westext.wess.wess_driver)

 	BinUnion (class in westpa.analysis.core)

 	blocked_iter() (in module westpa.core.propagators)

 	bootstrap_ci() (in module westpa.oldtools.aframe.mcbs)

 	(in module westpa.oldtools.stats.mcbs)

 	bootstrap_ci_ll() (in module westpa.oldtools.aframe.mcbs)

 	boundaries (westpa.core.binning.assign.RectilinearBinMapper property)

 	(westpa.core.binning.RectilinearBinMapper property)

 	(westpa.tools.binning.RectilinearBinMapper property)

 	BytesIO (class in westpa.core.propagators.executable)

C

 	
 	cache_data() (westpa.core.h5io.IterBlockedDataset method)

 	cache_pcoords (westpa.cli.core.w_succ.WESTDataReaderMixin property)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin property)

 	(westpa.oldtools.aframe.WESTDataReaderMixin property)

 	calc_avg_rate() (in module westpa.cli.tools.w_red)

 	calc_chunksize() (in module westpa.core.data_manager)

 	(in module westpa.core.h5io)

 	calc_ci_bound_indices() (in module westpa.oldtools.aframe.mcbs)

 	(westpa.oldtools.aframe.mcbs.MCBSMixin method)

 	(westpa.oldtools.aframe.MCBSMixin method)

 	calc_evol_flux() (westpa.cli.tools.w_fluxanl.WFluxanlTool method)

 	calc_mcbs_nsets() (in module westpa.oldtools.aframe.mcbs)

 	(westpa.oldtools.aframe.mcbs.MCBSMixin method)

 	(westpa.oldtools.aframe.MCBSMixin method)

 	calc_rate() (westpa.cli.tools.w_red.RateCalculator method)

 	calc_rates() (in module westpa.cli.tools.w_red)

 	(in module westpa.core.kinetics.rate_averaging)

 	(westpa.cli.tools.w_red.RateCalculator method)

 	calc_stats() (in module westpa.core.reweight.matrix)

 	calc_store_flux_data() (westpa.cli.tools.w_fluxanl.WFluxanlTool method)

 	calculate() (westpa.core.kinetics.rate_averaging.RateAverager method)

 	(westpa.core.kinetics.RateAverager method)

 	(westpa.westext.weed.weed_driver.RateAverager method)

 	(westpa.westext.wess.wess_driver.RateAverager method)

 	calculate_labeled_fluxes() (in module westpa.core.kinetics)

 	(in module westpa.core.kinetics.matrates)

 	calculate_labeled_fluxes_alllags() (in module westpa.core.kinetics)

 	(in module westpa.core.kinetics.matrates)

 	calculate_state_populations() (westpa.cli.tools.w_direct.DStateProbs method)

 	(westpa.cli.tools.w_stateprobs.DStateProbs method)

 	canonicalize_endpoint() (westpa.work_managers.zeromq.work_manager.ZMQWorkManager class method)

 	(westpa.work_managers.zeromq.ZMQWorkManager class method)

 	cell_angles (westpa.core.h5io.Frames attribute)

 	cell_lengths (westpa.core.h5io.Frames attribute)

 	center_coordinates() (westpa.core.h5io.Trajectory method)

 	change_duration() (westpa.work_managers.zeromq.core.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.node.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.work_manager.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.worker.PassiveMultiTimer method)

 	check_bin_selection() (westpa.oldtools.aframe.kinetics.KineticsAnalysisMixin method)

 	(westpa.oldtools.aframe.KineticsAnalysisMixin method)

 	check_bool() (in module westpa.core.propagators.executable)

 	(in module westpa.core.yamlcfg)

 	(in module westpa.westext.adaptvoronoi.adaptVor_driver)

 	(in module westpa.westext.weed.weed_driver)

 	(in module westpa.westext.wess.wess_driver)

 	check_data_binhash() (westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	check_data_iter_range_equal() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	check_data_iter_range_least() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	check_data_iter_step_conformant() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	check_data_iter_step_equal() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	check_iter_range() (westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	check_iter_range_equal() (in module westpa.core.h5io)

 	check_iter_range_least() (in module westpa.core.h5io)

 	check_propagation() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	check_threshold_configs() (westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.we_driver.WEDriver method)

 	check_workers() (westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	children (westpa.analysis.core.Walker property)

 	clear() (westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.progress.ProgressIndicator method)

 	(westpa.core.we_driver.WEDriver method)

 	(westpa.oldtools.aframe.TransitionEventAccumulator method)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator method)

 	(westpa.tools.progress.ProgressIndicator method)

 	(westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	clear_basis_initial_states() (westpa.core.propagators.executable.WESTPropagator method)

 	(westpa.core.propagators.WESTPropagator method)

 	
 	clear_run_cache() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	clear_state() (westpa.oldtools.aframe.TransitionEventAccumulator method)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator method)

 	clockIn() (westpa.work_managers.mpi.Worker method)

 	close() (westpa.analysis.core.Run method)

 	(westpa.cli.tools.w_assign.WESTDataReader method)

 	(westpa.cli.tools.w_bins.WESTDataReader method)

 	(westpa.cli.tools.w_crawl.WESTDataReader method)

 	(westpa.cli.tools.w_dumpsegs.WESTDataReader method)

 	(westpa.cli.tools.w_fluxanl.WESTDataReader method)

 	(westpa.cli.tools.w_ipa.WESTDataReader method)

 	(westpa.cli.tools.w_ntop.WESTDataReader method)

 	(westpa.cli.tools.w_pdist.WESTDataReader method)

 	(westpa.cli.tools.w_select.WESTDataReader method)

 	(westpa.cli.tools.w_trace.WESTDataReader method)

 	(westpa.core.h5io.HDF5TrajectoryFile method)

 	(westpa.core.propagators.executable.BytesIO method)

 	(westpa.core.textio.NumericTextOutputFormatter method)

 	(westpa.tools.data_reader.WESTDataReader method)

 	(westpa.tools.kinetics_tool.WESTDataReader method)

 	(westpa.tools.WESTDataReader method)

 	close_analysis_backing() (westpa.cli.core.w_succ.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.atool.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.WESTAnalysisTool method)

 	close_backing() (westpa.core.data_manager.WESTDataManager method)

 	close_bf_h5file() (westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	closed (westpa.analysis.core.Run property)

 	(westpa.core.data_manager.WESTDataManager property)

 	(westpa.core.propagators.executable.BytesIO attribute)

 	ClusterList (class in westpa.westext.weed.BinCluster)

 	cmd_info() (westpa.cli.tools.w_bins.WBinTool method)

 	cmd_rebin() (westpa.cli.tools.w_bins.WBinTool method)

 	cmoment() (westpa.oldtools.stats.edfs.EDF method)

 	coalesce_announcements() (westpa.work_managers.zeromq.core.Message class method)

 	(westpa.work_managers.zeromq.node.Message class method)

 	(westpa.work_managers.zeromq.work_manager.Message class method)

 	(westpa.work_managers.zeromq.worker.Message class method)

 	coerce_type_if_present() (westpa.core.yamlcfg.YAMLConfig method)

 	color_output_filename (westpa.cli.tools.ploterr.DirectStateprobs attribute)

 	(westpa.cli.tools.ploterr.ReweightStateprobs attribute)

 	comm_loop() (westpa.work_managers.zeromq.node.ZMQNode method)

 	(westpa.work_managers.zeromq.work_manager.ZMQNode method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.worker.ZMQExecutor method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQNode method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	comment_string (westpa.core.textio.NumericTextOutputFormatter attribute)

 	CommonOutputMixin (class in westpa.cli.core.w_succ)

 	(class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.output)

 	CommonPloterrs (class in westpa.cli.tools.ploterr)

 	concatenate() (in module westpa.analysis.trajectories)

 	(westpa.westext.weed.UncertMath.UncertContainer method)

 	conditional_fluxes (westpa.cli.tools.w_red.RateCalculator property)

 	ConfigItemMissing, [1]

 	ConfigItemTypeError

 	ConfigValueError

 	ConfigValueWarning

 	ConsistencyError

 	ConsistencyWarning

 	constraints (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	(westpa.core.h5io.HDF5TrajectoryFile property)

 	construct_bins() (westpa.cli.tools.w_eddist.WEDDist method)

 	(westpa.cli.tools.w_pdist.WPDist method)

 	(westpa.core.binning.assign.BinMapper method)

 	construct_histogram() (westpa.cli.tools.w_eddist.WEDDist method)

 	(westpa.cli.tools.w_pdist.WPDist method)

 	construct_next() (westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.we_driver.WEDriver method)

 	contextmanager() (in module westpa.work_managers.core)

 	continue_accumulation() (westpa.oldtools.aframe.TransitionEventAccumulator method)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator method)

 	coord_dtype (in module westpa.core.binning)

 	(in module westpa.core.binning.assign)

 	coordinates (westpa.core.h5io.Frames attribute)

 	copy() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	correction() (westpa.cli.tools.w_red.DurationCorrector method)

 	count (class in westpa.tools.binning)

 	count() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	count_dtype (westpa.oldtools.aframe.TransitionEventAccumulator attribute)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator attribute)

 	create_dataset_from_dsopts() (in module westpa.core.data_manager)

 	create_hdf5_group() (in module westpa.core.h5io)

 	create_ibstate_group() (westpa.core.data_manager.WESTDataManager method)

 	create_ibstate_iter_h5file() (westpa.core.data_manager.WESTDataManager method)

 	create_idtype_array() (in module westpa.cli.tools.w_multi_west)

 	create_initial_states() (westpa.core.data_manager.WESTDataManager method)

 	create_iter_group() (westpa.cli.tools.w_assign.WESTPAH5File method)

 	(westpa.core.h5io.WESTPAH5File method)

 	create_traj_group() (westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	cumulative_event_duration_histogram (westpa.cli.tools.w_red.DurationCorrector property)

 	current (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	current_iter_assignments (westpa.core.binning.mab_driver.WEDriver property)

 	(westpa.core.we_driver.WEDriver property)

 	current_iter_segments (westpa.core.binning.mab_driver.WEDriver property)

 	(westpa.core.we_driver.WEDriver property)

 	current_iteration (westpa.core.data_manager.WESTDataManager property)

D

 	
 	DAll (class in westpa.cli.tools.w_direct)

 	DAverage (class in westpa.cli.tools.w_direct)

 	days (westpa.core.sim_manager.timedelta attribute)

 	default_aux_compression_threshold (westpa.core.data_manager.WESTDataManager attribute)

 	default_chunksize (westpa.oldtools.aframe.data_reader.ExtDataReaderMixin attribute)

 	(westpa.oldtools.aframe.ExtDataReaderMixin attribute)

 	default_comm_mode (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	default_flush_period (westpa.core.data_manager.WESTDataManager attribute)

 	default_iter_prec (westpa.cli.tools.w_assign.WESTPAH5File attribute)

 	(westpa.core.data_manager.WESTDataManager attribute)

 	(westpa.core.h5io.WESTPAH5File attribute)

 	default_kinetics_file (westpa.cli.tools.w_direct.DAll attribute)

 	(westpa.cli.tools.w_direct.DAverage attribute)

 	(westpa.cli.tools.w_direct.DKinAvg attribute)

 	(westpa.cli.tools.w_direct.DKinetics attribute)

 	(westpa.cli.tools.w_direct.DStateProbs attribute)

 	(westpa.cli.tools.w_kinavg.DKinAvg attribute)

 	(westpa.cli.tools.w_kinavg.WKinAvg attribute)

 	(westpa.cli.tools.w_kinetics.DKinetics attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.RWMatrix attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.PAAverage attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.RWAll attribute)

 	(westpa.cli.tools.w_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.RWMatrix attribute)

 	(westpa.cli.tools.w_reweight.RWRate attribute)

 	(westpa.cli.tools.w_reweight.RWStateProbs attribute)

 	(westpa.cli.tools.w_stateprobs.DStateProbs attribute)

 	(westpa.cli.tools.w_stateprobs.WStateProbs attribute)

 	default_master_heartbeat (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	default_output_file (westpa.cli.tools.w_direct.AverageCommands attribute)

 	(westpa.cli.tools.w_direct.DKinetics attribute)

 	(westpa.cli.tools.w_kinavg.WKinAvg attribute)

 	(westpa.cli.tools.w_kinetics.DKinetics attribute)

 	(westpa.cli.tools.w_kinetics.WKinetics attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.PAMatrix attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.RWMatrix attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.PAAverage attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.AverageCommands attribute)

 	(westpa.cli.tools.w_reweight.RWAll attribute)

 	(westpa.cli.tools.w_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.RWMatrix attribute)

 	(westpa.cli.tools.w_reweight.RWRate attribute)

 	(westpa.cli.tools.w_stateprobs.WStateProbs attribute)

 	(westpa.tools.kinetics_tool.AverageCommands attribute)

 	default_parallel_work_manager (westpa.work_managers.environment.WMEnvironment attribute)

 	default_shutdown_timeout (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	default_startup_timeout (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	default_timeout_factor (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	default_we_h5file_driver (westpa.core.data_manager.WESTDataManager attribute)

 	default_we_h5filename (westpa.core.data_manager.WESTDataManager attribute)

 	default_work_manager (westpa.work_managers.environment.WMEnvironment attribute)

 	default_worker_heartbeat (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	del_iter_group() (westpa.core.data_manager.WESTDataManager method)

 	del_iter_summary() (westpa.core.data_manager.WESTDataManager method)

 	delete_binning_group() (westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	delete_transitions_group() (westpa.oldtools.aframe.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.TransitionAnalysisMixin method)

 	deque (class in westpa.work_managers.mpi)

 	(class in westpa.work_managers.zeromq.work_manager)

 	description (westpa.cli.tools.ploterr.DirectKinetics attribute)

 	(westpa.cli.tools.ploterr.DirectStateprobs attribute)

 	(westpa.cli.tools.ploterr.GenericIntervalSubcommand attribute)

 	(westpa.cli.tools.ploterr.PloterrsTool attribute)

 	(westpa.cli.tools.ploterr.WESTSubcommand attribute)

 	(westpa.cli.tools.plothist.AveragePlotHist attribute)

 	(westpa.cli.tools.plothist.EvolutionPlotHist attribute)

 	(westpa.cli.tools.plothist.InstantPlotHist attribute)

 	(westpa.cli.tools.plothist.PlotHistTool attribute)

 	(westpa.cli.tools.plothist.WESTSubcommand attribute)

 	(westpa.cli.tools.w_assign.WAssign attribute)

 	(westpa.cli.tools.w_bins.WBinTool attribute)

 	(westpa.cli.tools.w_bins.WESTTool attribute)

 	(westpa.cli.tools.w_crawl.WCrawl attribute)

 	(westpa.cli.tools.w_direct.DAll attribute)

 	(westpa.cli.tools.w_direct.DAverage attribute)

 	(westpa.cli.tools.w_direct.DKinAvg attribute)

 	(westpa.cli.tools.w_direct.DKinetics attribute)

 	(westpa.cli.tools.w_direct.DStateProbs attribute)

 	(westpa.cli.tools.w_dumpsegs.WDumpSegs attribute)

 	(westpa.cli.tools.w_dumpsegs.WESTTool attribute)

 	(westpa.cli.tools.w_eddist.WEDDist attribute)

 	(westpa.cli.tools.w_fluxanl.WESTTool attribute)

 	(westpa.cli.tools.w_fluxanl.WFluxanlTool attribute)

 	(westpa.cli.tools.w_kinavg.DKinAvg attribute)

 	(westpa.cli.tools.w_kinavg.WDirect attribute)

 	(westpa.cli.tools.w_kinetics.DKinetics attribute)

 	(westpa.cli.tools.w_kinetics.WDirect attribute)

 	(westpa.cli.tools.w_multi_west.WESTTool attribute)

 	(westpa.cli.tools.w_multi_west.WMultiWest attribute)

 	(westpa.cli.tools.w_ntop.WESTTool attribute)

 	(westpa.cli.tools.w_ntop.WNTopTool attribute)

 	(westpa.cli.tools.w_pdist.WPDist attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.RWMatrix attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.WReweight attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.WReweight attribute)

 	(westpa.cli.tools.w_red.WRed attribute)

 	(westpa.cli.tools.w_reweight.RWAll attribute)

 	(westpa.cli.tools.w_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.RWMatrix attribute)

 	(westpa.cli.tools.w_reweight.RWRate attribute)

 	(westpa.cli.tools.w_reweight.RWStateProbs attribute)

 	(westpa.cli.tools.w_select.WSelectTool attribute)

 	(westpa.cli.tools.w_stateprobs.DStateProbs attribute)

 	(westpa.cli.tools.w_stateprobs.WDirect attribute)

 	(westpa.cli.tools.w_trace.WESTTool attribute)

 	(westpa.cli.tools.w_trace.WTraceTool attribute)

 	(westpa.tools.core.WESTSubcommand attribute)

 	(westpa.tools.core.WESTTool attribute)

 	(westpa.tools.kinetics_tool.WESTSubcommand attribute)

 	(westpa.tools.WESTSubcommand attribute)

 	(westpa.tools.WESTTool attribute)

 	
 	determine_total_bins() (westpa.core.binning.mab.MABBinMapper method)

 	(westpa.core.binning.mab_manager.MABBinMapper method)

 	(westpa.core.binning.MABBinMapper method)

 	dfunc() (westpa.westext.adaptvoronoi.AdaptiveVoronoiDriver method)

 	(westpa.westext.adaptvoronoi.adaptVor_driver.AdaptiveVoronoiDriver method)

 	direct (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	DirectKinetics (class in westpa.cli.tools.ploterr)

 	DirectStateprobs (class in westpa.cli.tools.ploterr)

 	dirname() (in module westpa.core.data_manager)

 	distance_unit (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	DKinAvg (class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_kinavg)

 	DKinetics (class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_kinetics)

 	do_average_plot_1d() (westpa.cli.tools.plothist.AveragePlotHist method)

 	do_average_plot_2d() (westpa.cli.tools.plothist.AveragePlotHist method)

 	do_instant_plot_1d() (westpa.cli.tools.plothist.InstantPlotHist method)

 	do_instant_plot_2d() (westpa.cli.tools.plothist.InstantPlotHist method)

 	do_plot() (westpa.cli.tools.ploterr.CommonPloterrs method)

 	done (westpa.work_managers.core.WMFuture property)

 	(westpa.work_managers.mpi.WMFuture property)

 	(westpa.work_managers.processes.WMFuture property)

 	(westpa.work_managers.serial.WMFuture property)

 	(westpa.work_managers.threads.WMFuture property)

 	(westpa.work_managers.zeromq.work_manager.WMFuture property)

 	draw() (westpa.core.progress.ProgressIndicator method)

 	(westpa.tools.progress.ProgressIndicator method)

 	draw_fancy() (westpa.core.progress.ProgressIndicator method)

 	(westpa.tools.progress.ProgressIndicator method)

 	draw_simple() (westpa.core.progress.ProgressIndicator method)

 	(westpa.tools.progress.ProgressIndicator method)

 	drop_cache() (westpa.core.h5io.IterBlockedDataset method)

 	DSSpec (class in westpa.core.h5io)

 	DStateProbs (class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_stateprobs)

 	dtau (westpa.cli.tools.w_red.RateCalculator property)

 	duration (westpa.work_managers.zeromq.core.PassiveTimer attribute)

 	DurationCorrector (class in westpa.cli.tools.w_red)

 	DurationDataset (class in westpa.cli.tools.w_eddist)

E

 	
 	EDF (class in westpa.oldtools.stats.edfs)

 	emit_header (westpa.core.textio.NumericTextOutputFormatter attribute)

 	emit_trace_h5() (westpa.cli.tools.w_trace.WTraceTool method)

 	emit_trace_text() (westpa.cli.tools.w_trace.WTraceTool method)

 	Empty

 	empty_like() (westpa.core.h5io.IterBlockedDataset class method)

 	endpoint_type_names (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	endpoint_type_text (westpa.cli.core.w_fork.Segment property)

 	(westpa.cli.core.w_states.Segment property)

 	(westpa.cli.core.w_succ.Segment property)

 	(westpa.cli.tools.w_dumpsegs.Segment property)

 	(westpa.cli.tools.w_trace.Segment property)

 	(westpa.core.binning.mab_manager.Segment property)

 	(westpa.core.data_manager.Segment property)

 	(westpa.core.propagators.executable.Segment property)

 	(westpa.core.segment.Segment property)

 	(westpa.core.sim_manager.Segment property)

 	(westpa.core.states.Segment property)

 	(westpa.core.we_driver.Segment property)

 	(westpa.oldtools.aframe.data_reader.Segment property)

 	endpoint_types (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	ensure_type() (in module westpa.core.h5io)

 	entry_point() (in module westpa.cli.core.w_fork)

 	(in module westpa.cli.core.w_init)

 	(in module westpa.cli.core.w_run)

 	(in module westpa.cli.core.w_states)

 	(in module westpa.cli.core.w_succ)

 	(in module westpa.cli.core.w_truncate)

 	(in module westpa.cli.tools.ploterr)

 	(in module westpa.cli.tools.plothist)

 	(in module westpa.cli.tools.w_assign)

 	(in module westpa.cli.tools.w_bins)

 	(in module westpa.cli.tools.w_crawl)

 	(in module westpa.cli.tools.w_direct)

 	(in module westpa.cli.tools.w_dumpsegs)

 	(in module westpa.cli.tools.w_eddist)

 	(in module westpa.cli.tools.w_fluxanl)

 	(in module westpa.cli.tools.w_ipa)

 	(in module westpa.cli.tools.w_kinavg)

 	(in module westpa.cli.tools.w_kinetics)

 	(in module westpa.cli.tools.w_multi_west)

 	(in module westpa.cli.tools.w_ntop)

 	(in module westpa.cli.tools.w_pdist)

 	(in module westpa.cli.tools.w_postanalysis_matrix)

 	(in module westpa.cli.tools.w_postanalysis_reweight)

 	(in module westpa.cli.tools.w_red)

 	(in module westpa.cli.tools.w_reweight)

 	(in module westpa.cli.tools.w_select)

 	(in module westpa.cli.tools.w_stateprobs)

 	(in module westpa.cli.tools.w_trace)

 	ENV_BSTATE_DATA_REF (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_BSTATE_ID (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_CURRENT_ITER (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_CURRENT_SEG_DATA_REF (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_CURRENT_SEG_ID (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_CURRENT_SEG_INITPOINT (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	
 	ENV_ISTATE_DATA_REF (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_ISTATE_ID (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	env_name() (westpa.work_managers.environment.WMEnvironment method)

 	ENV_PARENT_DATA_REF (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_PARENT_SEG_ID (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	env_prefix (westpa.work_managers.environment.WMEnvironment attribute)

 	ENV_RAND128 (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_RAND16 (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_RAND32 (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_RAND64 (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_RANDFLOAT (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	ENV_STRUCT_DATA_REF (westpa.core.data_manager.ExecutablePropagator attribute)

 	(westpa.core.propagators.executable.ExecutablePropagator attribute)

 	epilog (westpa.cli.tools.w_bins.WESTTool attribute)

 	(westpa.cli.tools.w_dumpsegs.WESTTool attribute)

 	(westpa.cli.tools.w_fluxanl.WESTTool attribute)

 	(westpa.cli.tools.w_multi_west.WESTTool attribute)

 	(westpa.cli.tools.w_ntop.WESTTool attribute)

 	(westpa.cli.tools.w_trace.WESTTool attribute)

 	(westpa.tools.core.WESTTool attribute)

 	(westpa.tools.WESTTool attribute)

 	estimate_rates() (in module westpa.core.kinetics.matrates)

 	event_duration_histogram (westpa.cli.tools.w_red.DurationCorrector property)

 	EvolutionPlotHist (class in westpa.cli.tools.plothist)

 	exception (westpa.work_managers.core.WMFuture property)

 	(westpa.work_managers.mpi.WMFuture property)

 	(westpa.work_managers.processes.WMFuture property)

 	(westpa.work_managers.serial.WMFuture property)

 	(westpa.work_managers.threads.WMFuture property)

 	(westpa.work_managers.zeromq.work_manager.WMFuture property)

 	exclude_arg() (westpa.tools.binning.WESTToolComponent method)

 	(westpa.tools.core.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTToolComponent method)

 	(westpa.tools.iter_range.WESTToolComponent method)

 	(westpa.tools.progress.WESTToolComponent method)

 	(westpa.tools.selected_segs.WESTToolComponent method)

 	(westpa.tools.WESTToolComponent method)

 	exec_child() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	exec_child_from_child_info() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	exec_for_basis_state() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	exec_for_initial_state() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	exec_for_iteration() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	exec_for_segment() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	ExecutablePropagator (class in westpa.core.data_manager)

 	(class in westpa.core.propagators.executable)

 	execute() (westpa.work_managers.zeromq.core.Task method)

 	(westpa.work_managers.zeromq.work_manager.Task method)

 	(westpa.work_managers.zeromq.worker.Task method)

 	expandvars() (in module westpa.core.binning.mab)

 	expired (westpa.work_managers.zeromq.core.PassiveTimer property)

 	expired() (westpa.work_managers.zeromq.core.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.node.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.work_manager.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.worker.PassiveMultiTimer method)

 	expires_in (westpa.work_managers.zeromq.core.PassiveTimer property)

 	expiring_flushing_lock (class in westpa.core.data_manager)

 	expiring_flushing_lock() (westpa.core.data_manager.WESTDataManager method)

 	ExtDataReaderMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.data_reader)

 	extend() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	extendleft() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	extent (westpa.core.progress.ProgressIndicator property)

 	(westpa.tools.progress.ProgressIndicator property)

 	extract_data() (westpa.core.kinetics.rate_averaging.RateAverager method)

 	(westpa.core.kinetics.RateAverager method)

 	(westpa.westext.weed.weed_driver.RateAverager method)

 	(westpa.westext.wess.wess_driver.RateAverager method)

 	extract_fluxes() (in module westpa.cli.tools.w_fluxanl)

F

 	
 	FakeTrajTreeSet (class in westpa.trajtree.trajtree)

 	fconcat (westpa.analysis.trajectories.Trajectory property)

 	fftconvolve() (in module westpa.cli.tools.w_fluxanl)

 	fget (westpa.analysis.trajectories.Trajectory property)

 	FileLinkedDSSpec (class in westpa.core.h5io)

 	final_pcoord() (westpa.cli.core.w_fork.Segment static method)

 	(westpa.cli.core.w_states.Segment static method)

 	(westpa.cli.core.w_succ.Segment static method)

 	(westpa.cli.tools.w_dumpsegs.Segment static method)

 	(westpa.cli.tools.w_trace.Segment static method)

 	(westpa.core.binning.mab_manager.Segment static method)

 	(westpa.core.data_manager.Segment static method)

 	(westpa.core.propagators.executable.Segment static method)

 	(westpa.core.segment.Segment static method)

 	(westpa.core.sim_manager.Segment static method)

 	(westpa.core.states.Segment static method)

 	(westpa.core.we_driver.Segment static method)

 	(westpa.oldtools.aframe.data_reader.Segment static method)

 	finalize() (westpa.cli.tools.w_crawl.WESTPACrawler method)

 	finalize_iteration() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	(westpa.core.propagators.executable.WESTPropagator method)

 	(westpa.core.propagators.WESTPropagator method)

 	(westpa.core.sim_manager.WESimManager method)

 	finalize_run() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	(westpa.core.systems.WESTSystem method)

 	(westpa.core.yamlcfg.YAMLSystem method)

 	find_bin_mapper() (westpa.core.data_manager.WESTDataManager method)

 	find_ibstate_group() (westpa.core.data_manager.WESTDataManager method)

 	find_macrostate_transitions() (in module westpa.core.kinetics)

 	(in module westpa.core.kinetics.events)

 	find_successful_trajs() (westpa.cli.core.w_succ.WSucc method)

 	find_transitions() (westpa.oldtools.aframe.BFTransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.BFTransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.TransitionAnalysisMixin method)

 	find_tstate_group() (westpa.core.data_manager.WESTDataManager method)

 	flat_to_nested_matrix() (in module westpa.core.kinetics)

 	flat_to_nested_vector() (in module westpa.core.kinetics)

 	(in module westpa.core.kinetics.matrates)

 	flush() (westpa.core.h5io.HDF5TrajectoryFile method)

 	(westpa.core.propagators.executable.BytesIO method)

 	
 	flush_backing() (westpa.core.data_manager.WESTDataManager method)

 	flush_transition_data() (westpa.oldtools.aframe.TransitionEventAccumulator method)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator method)

 	flushing_lock (class in westpa.core.data_manager)

 	flushing_lock() (westpa.core.data_manager.WESTDataManager method)

 	flux_assign() (in module westpa.core.kinetics.rate_averaging)

 	flux_output_filename (westpa.cli.tools.ploterr.DirectKinetics attribute)

 	(westpa.cli.tools.ploterr.ReweightKinetics attribute)

 	FluxMatrix (class in westpa.cli.tools.w_reweight)

 	(class in westpa.core.reweight)

 	(class in westpa.core.reweight.matrix)

 	FnDSSpec (class in westpa.core.h5io)

 	(class in westpa.tools.data_reader)

 	forcefield (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	(westpa.core.h5io.HDF5TrajectoryFile property)

 	Frames (class in westpa.core.h5io)

 	from_array() (westpa.oldtools.stats.edfs.EDF static method)

 	from_arrays() (westpa.oldtools.stats.edfs.EDF static method)

 	from_data_manager() (westpa.cli.tools.w_trace.Trace class method)

 	from_environ() (westpa.work_managers.core.WorkManager class method)

 	(westpa.work_managers.mpi.MPIWorkManager class method)

 	(westpa.work_managers.mpi.WorkManager class method)

 	(westpa.work_managers.processes.ProcessWorkManager class method)

 	(westpa.work_managers.processes.WorkManager class method)

 	(westpa.work_managers.ProcessWorkManager class method)

 	(westpa.work_managers.serial.SerialWorkManager class method)

 	(westpa.work_managers.serial.WorkManager class method)

 	(westpa.work_managers.SerialWorkManager class method)

 	(westpa.work_managers.threads.ThreadsWorkManager class method)

 	(westpa.work_managers.threads.WorkManager class method)

 	(westpa.work_managers.ThreadsWorkManager class method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager class method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager class method)

 	(westpa.work_managers.zeromq.ZMQWorkManager class method)

 	from_iter() (westpa.tools.selected_segs.AllSegmentSelection method)

 	(westpa.tools.selected_segs.SegmentSelection method)

 	(westpa.trajtree.trajtree.AllSegmentSelection method)

 	from_kinetics_file() (westpa.cli.tools.w_red.DurationCorrector static method)

 	from_string() (westpa.core.h5io.SingleDSSpec class method)

 	from_text() (westpa.tools.selected_segs.SegmentSelection class method)

 	fstate (westpa.cli.tools.w_red.RateCalculator property)

 	FuncBinMapper (class in westpa.core.binning)

 	(class in westpa.core.binning.assign)

 	(class in westpa.core.binning.mab)

 	future (westpa.cli.tools.w_ipa.WIPI property)

 	FutureWatcher (class in westpa.work_managers.core)

G

 	
 	gen_istate() (in module westpa.core.wm_ops)

 	(westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	(westpa.core.propagators.executable.WESTPropagator method)

 	(westpa.core.propagators.WESTPropagator method)

 	generate_file_list() (westpa.cli.tools.w_multi_west.WESTMultiTool method)

 	(westpa.tools.core.WESTMultiTool method)

 	(westpa.tools.WESTMultiTool method)

 	generate_future() (in module westpa.cli.tools.w_reweight)

 	(in module westpa.tools.kinetics_tool)

 	generate_reweight_data() (westpa.cli.tools.w_reweight.RWReweight method)

 	GenericIntervalSubcommand (class in westpa.cli.tools.ploterr)

 	get() (westpa.core.yamlcfg.YAMLConfig method)

 	get_all_parent_ids() (westpa.core.data_manager.WESTDataManager method)

 	get_basis_states() (westpa.core.data_manager.WESTDataManager method)

 	get_bin_assignments() (westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	get_bin_mapper() (in module westpa.cli.tools.w_multi_west)

 	(westpa.core.data_manager.WESTDataManager method)

 	get_bin_populations() (westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	get_bssize() (in module westpa.mclib)

 	(in module westpa.oldtools.stats.mcbs)

 	get_bstate_pcoords() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	get_child_ids() (westpa.core.data_manager.WESTDataManager method)

 	get_children() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_choice() (westpa.core.yamlcfg.YAMLConfig method)

 	get_created_seg_ids() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_creator_data() (in module westpa.core.h5io)

 	get_dfunc_method() (westpa.westext.adaptvoronoi.AdaptiveVoronoiDriver method)

 	(westpa.westext.adaptvoronoi.adaptVor_driver.AdaptiveVoronoiDriver method)

 	get_exception() (westpa.work_managers.core.WMFuture method)

 	(westpa.work_managers.mpi.WMFuture method)

 	(westpa.work_managers.processes.WMFuture method)

 	(westpa.work_managers.serial.WMFuture method)

 	(westpa.work_managers.threads.WMFuture method)

 	(westpa.work_managers.zeromq.work_manager.WMFuture method)

 	get_extent() (westpa.cli.tools.plothist.NonUniformImage method)

 	get_identification() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	get_initial_centers() (westpa.westext.adaptvoronoi.AdaptiveVoronoiDriver method)

 	(westpa.westext.adaptvoronoi.adaptVor_driver.AdaptiveVoronoiDriver method)

 	get_initial_nodes() (westpa.oldtools.aframe.TrajWalker method)

 	(westpa.oldtools.aframe.trajwalker.TrajWalker method)

 	(westpa.oldtools.aframe.transitions.TrajWalker method)

 	get_initial_states() (westpa.core.data_manager.WESTDataManager method)

 	get_istate_futures() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	get_iter_data() (westpa.cli.tools.w_eddist.DurationDataset method)

 	(westpa.core.h5io.DSSpec method)

 	(westpa.core.h5io.FnDSSpec method)

 	(westpa.core.h5io.MultiDSSpec method)

 	(westpa.core.h5io.SingleIterDSSpec method)

 	(westpa.core.h5io.SingleSegmentDSSpec method)

 	(westpa.tools.data_reader.FnDSSpec method)

 	(westpa.tools.data_reader.MultiDSSpec method)

 	(westpa.tools.data_reader.SingleIterDSSpec method)

 	(westpa.tools.data_reader.SingleSegmentDSSpec method)

 	get_iter_group() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.cli.tools.w_assign.WESTPAH5File method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.core.h5io.WESTPAH5File method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_iter_range() (in module westpa.core.h5io)

 	get_iter_step() (in module westpa.core.h5io)

 	get_iter_summary() (westpa.core.data_manager.WESTDataManager method)

 	get_iteration_entry() (in module westpa.core.h5io)

 	get_iteration_slice() (in module westpa.core.h5io)

 	get_macrostate_rates() (in module westpa.core.kinetics.matrates)

 	get_mapper_func() (westpa.westext.adaptvoronoi.AdaptiveVoronoiDriver method)

 	(westpa.westext.adaptvoronoi.adaptVor_driver.AdaptiveVoronoiDriver method)

 	get_max_traj_len() (westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	get_n_trajs() (westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	get_new_weight_data() (westpa.core.data_manager.WESTDataManager method)

 	get_object() (in module westpa.cli.tools.plothist)

 	(in module westpa.cli.tools.w_assign)

 	(in module westpa.cli.tools.w_crawl)

 	(in module westpa.cli.tools.w_select)

 	(in module westpa.core.extloader)

 	(in module westpa.core.propagators.executable)

 	(in module westpa.tools.binning)

 	(in module westpa.tools.data_reader)

 	get_parent_array() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_parent_ids() (westpa.core.data_manager.WESTDataManager method)

 	get_path() (westpa.core.yamlcfg.YAMLConfig method)

 	get_pathlist() (westpa.core.yamlcfg.YAMLConfig method)

 	get_pcoord() (in module westpa.core.wm_ops)

 	(westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	(westpa.core.propagators.executable.WESTPropagator method)

 	(westpa.core.propagators.WESTPropagator method)

 	get_pcoord_array() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_pcoord_dataset() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_pcoord_len() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_pcoords() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_python_object() (westpa.core.yamlcfg.YAMLConfig method)

 	get_rates() (westpa.westext.weed.weed_driver.WEEDDriver method)

 	(westpa.westext.weed.WEEDDriver method)

 	(westpa.westext.wess.wess_driver.WESSDriver method)

 	(westpa.westext.wess.WESSDriver method)

 	get_raw_rates() (in module westpa.cli.tools.w_red)

 	get_result() (westpa.work_managers.core.WMFuture method)

 	(westpa.work_managers.mpi.WMFuture method)

 	(westpa.work_managers.processes.WMFuture method)

 	(westpa.work_managers.serial.WMFuture method)

 	(westpa.work_managers.threads.WMFuture method)

 	(westpa.work_managers.zeromq.work_manager.WMFuture method)

 	get_root_indices() (westpa.trajtree.trajtree.TrajTreeSet method)

 	(westpa.trajtree.TrajTreeSet method)

 	get_roots() (westpa.trajtree.trajtree.TrajTreeSet method)

 	(westpa.trajtree.TrajTreeSet method)

 	get_seg_ids() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	
 	get_seg_index() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_segment_data() (westpa.core.h5io.DSSpec method)

 	(westpa.core.h5io.SingleSegmentDSSpec method)

 	(westpa.tools.data_reader.SingleSegmentDSSpec method)

 	get_segment_data_slice() (westpa.cli.tools.w_trace.Trace method)

 	get_segment_initial_states() (westpa.core.data_manager.WESTDataManager method)

 	get_segments() (westpa.analysis.trajectories.SegmentCollector method)

 	(westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_segments_by_id() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_state() (westpa.oldtools.aframe.TransitionEventAccumulator method)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator method)

 	get_steady_state() (in module westpa.core.kinetics.matrates)

 	get_summary_table() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_target_states() (westpa.core.data_manager.WESTDataManager method)

 	get_total_time() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	get_traceback() (westpa.work_managers.core.WMFuture method)

 	(westpa.work_managers.mpi.WMFuture method)

 	(westpa.work_managers.processes.WMFuture method)

 	(westpa.work_managers.serial.WMFuture method)

 	(westpa.work_managers.threads.WMFuture method)

 	(westpa.work_managers.zeromq.work_manager.WMFuture method)

 	get_traj_group() (westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	get_traj_len() (westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	get_trajectory_roots() (westpa.oldtools.aframe.TrajWalker method)

 	(westpa.oldtools.aframe.trajwalker.TrajWalker method)

 	(westpa.oldtools.aframe.transitions.TrajWalker method)

 	get_transitions_ds() (westpa.oldtools.aframe.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.TransitionAnalysisMixin method)

 	get_typed() (westpa.core.yamlcfg.YAMLConfig method)

 	get_unused_initial_states() (westpa.core.data_manager.WESTDataManager method)

 	get_val() (westpa.work_managers.environment.WMEnvironment method)

 	get_weights() (westpa.core.data_manager.WESTDataManager method)

 	get_wtg_parent_array() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	getbuffer() (westpa.core.propagators.executable.BytesIO method)

 	getvalue() (westpa.core.propagators.executable.BytesIO method)

 	go() (westpa.cli.tools.ploterr.DirectKinetics method)

 	(westpa.cli.tools.ploterr.DirectStateprobs method)

 	(westpa.cli.tools.ploterr.GenericIntervalSubcommand method)

 	(westpa.cli.tools.ploterr.WESTMasterCommand method)

 	(westpa.cli.tools.ploterr.WESTSubcommand method)

 	(westpa.cli.tools.plothist.AveragePlotHist method)

 	(westpa.cli.tools.plothist.EvolutionPlotHist method)

 	(westpa.cli.tools.plothist.InstantPlotHist method)

 	(westpa.cli.tools.plothist.WESTMasterCommand method)

 	(westpa.cli.tools.plothist.WESTSubcommand method)

 	(westpa.cli.tools.w_assign.WAssign method)

 	(westpa.cli.tools.w_assign.WESTParallelTool method)

 	(westpa.cli.tools.w_bins.WBinTool method)

 	(westpa.cli.tools.w_bins.WESTTool method)

 	(westpa.cli.tools.w_crawl.WCrawl method)

 	(westpa.cli.tools.w_crawl.WESTParallelTool method)

 	(westpa.cli.tools.w_direct.DAll method)

 	(westpa.cli.tools.w_direct.DAverage method)

 	(westpa.cli.tools.w_direct.DKinAvg method)

 	(westpa.cli.tools.w_direct.DKinetics method)

 	(westpa.cli.tools.w_direct.DStateProbs method)

 	(westpa.cli.tools.w_direct.WESTMasterCommand method)

 	(westpa.cli.tools.w_direct.WESTParallelTool method)

 	(westpa.cli.tools.w_dumpsegs.WDumpSegs method)

 	(westpa.cli.tools.w_dumpsegs.WESTTool method)

 	(westpa.cli.tools.w_eddist.WEDDist method)

 	(westpa.cli.tools.w_eddist.WESTParallelTool method)

 	(westpa.cli.tools.w_fluxanl.WESTTool method)

 	(westpa.cli.tools.w_fluxanl.WFluxanlTool method)

 	(westpa.cli.tools.w_ipa.WESTParallelTool method)

 	(westpa.cli.tools.w_ipa.WIPI method)

 	(westpa.cli.tools.w_kinavg.DKinAvg method)

 	(westpa.cli.tools.w_kinavg.WESTMasterCommand method)

 	(westpa.cli.tools.w_kinavg.WESTParallelTool method)

 	(westpa.cli.tools.w_kinetics.DKinetics method)

 	(westpa.cli.tools.w_kinetics.WESTMasterCommand method)

 	(westpa.cli.tools.w_kinetics.WESTParallelTool method)

 	(westpa.cli.tools.w_multi_west.WESTMultiTool method)

 	(westpa.cli.tools.w_multi_west.WESTTool method)

 	(westpa.cli.tools.w_multi_west.WMultiWest method)

 	(westpa.cli.tools.w_ntop.WESTTool method)

 	(westpa.cli.tools.w_ntop.WNTopTool method)

 	(westpa.cli.tools.w_pdist.WESTParallelTool method)

 	(westpa.cli.tools.w_pdist.WPDist method)

 	(westpa.cli.tools.w_postanalysis_matrix.RWMatrix method)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTMasterCommand method)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTParallelTool method)

 	(westpa.cli.tools.w_postanalysis_reweight.RWAverage method)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTMasterCommand method)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_red.WESTParallelTool method)

 	(westpa.cli.tools.w_red.WRed method)

 	(westpa.cli.tools.w_reweight.RWAll method)

 	(westpa.cli.tools.w_reweight.RWAverage method)

 	(westpa.cli.tools.w_reweight.RWMatrix method)

 	(westpa.cli.tools.w_reweight.RWRate method)

 	(westpa.cli.tools.w_reweight.RWStateProbs method)

 	(westpa.cli.tools.w_reweight.WESTMasterCommand method)

 	(westpa.cli.tools.w_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_select.WESTParallelTool method)

 	(westpa.cli.tools.w_select.WSelectTool method)

 	(westpa.cli.tools.w_stateprobs.DStateProbs method)

 	(westpa.cli.tools.w_stateprobs.WESTMasterCommand method)

 	(westpa.cli.tools.w_stateprobs.WESTParallelTool method)

 	(westpa.cli.tools.w_trace.WESTTool method)

 	(westpa.cli.tools.w_trace.WTraceTool method)

 	(westpa.tools.core.WESTMasterCommand method)

 	(westpa.tools.core.WESTMultiTool method)

 	(westpa.tools.core.WESTParallelTool method)

 	(westpa.tools.core.WESTSubcommand method)

 	(westpa.tools.core.WESTTool method)

 	(westpa.tools.kinetics_tool.WESTSubcommand method)

 	(westpa.tools.WESTMasterCommand method)

 	(westpa.tools.WESTMultiTool method)

 	(westpa.tools.WESTParallelTool method)

 	(westpa.tools.WESTSubcommand method)

 	(westpa.tools.WESTTool method)

 	group_description (westpa.work_managers.environment.WMEnvironment attribute)

 	group_name (westpa.cli.tools.w_assign.WESTDSSynthesizer attribute)

 	(westpa.cli.tools.w_pdist.WESTDSSynthesizer attribute)

 	(westpa.cli.tools.w_pdist.WESTWDSSynthesizer attribute)

 	(westpa.tools.data_reader.WESTDSSynthesizer attribute)

 	(westpa.tools.data_reader.WESTWDSSynthesizer attribute)

 	(westpa.tools.WESTDSSynthesizer attribute)

 	(westpa.tools.WESTWDSSynthesizer attribute)

 	group_title (westpa.work_managers.environment.WMEnvironment attribute)

 	grouper() (in module westpa.core.binning.mab_manager)

 	(in module westpa.core.kinetics.rate_averaging)

 	(in module westpa.core.sim_manager)

H

 	
 	H5File (in module westpa.cli.tools.w_red)

 	h5file (westpa.core.h5io.FileLinkedDSSpec property)

 	h5group (westpa.analysis.core.Iteration property)

 	handle_reconfigure_timeout() (westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	handle_result() (westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	handle_task_request() (westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	has_pointer() (westpa.core.h5io.WESTIterationFile method)

 	has_restart() (westpa.core.h5io.WESTIterationFile method)

 	has_target_states (westpa.analysis.core.Iteration property)

 	has_topology() (westpa.core.h5io.WESTIterationFile method)

 	hash_args() (westpa.cli.tools.w_ipa.WIPI method)

 	hashfunc() (westpa.core.binning.assign.BinMapper method)

 	HDF5MDTrajectory (class in westpa.analysis.trajectories)

 	HDF5TrajectoryFile (class in westpa.core.h5io)

 	help (westpa.cli.tools.w_ipa.WIPI property)

 	help_text (westpa.cli.tools.ploterr.DirectKinetics attribute)

 	(westpa.cli.tools.ploterr.DirectStateprobs attribute)

 	(westpa.cli.tools.ploterr.GenericIntervalSubcommand attribute)

 	(westpa.cli.tools.ploterr.ReweightKinetics attribute)

 	(westpa.cli.tools.ploterr.ReweightStateprobs attribute)

 	(westpa.cli.tools.ploterr.WESTSubcommand attribute)

 	(westpa.cli.tools.plothist.AveragePlotHist attribute)

 	(westpa.cli.tools.plothist.EvolutionPlotHist attribute)

 	(westpa.cli.tools.plothist.InstantPlotHist attribute)

 	(westpa.cli.tools.plothist.WESTSubcommand attribute)

 	(westpa.cli.tools.w_direct.DAll attribute)

 	(westpa.cli.tools.w_direct.DAverage attribute)

 	(westpa.cli.tools.w_direct.DKinAvg attribute)

 	(westpa.cli.tools.w_direct.DKinetics attribute)

 	(westpa.cli.tools.w_direct.DStateProbs attribute)

 	(westpa.cli.tools.w_kinavg.DKinAvg attribute)

 	(westpa.cli.tools.w_kinavg.WKinAvg attribute)

 	(westpa.cli.tools.w_kinetics.DKinetics attribute)

 	(westpa.cli.tools.w_kinetics.WKinetics attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.PAMatrix attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.RWMatrix attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.PAAverage attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.RWAll attribute)

 	(westpa.cli.tools.w_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.RWMatrix attribute)

 	(westpa.cli.tools.w_reweight.RWRate attribute)

 	(westpa.cli.tools.w_reweight.RWReweight attribute)

 	(westpa.cli.tools.w_reweight.RWStateProbs attribute)

 	(westpa.cli.tools.w_stateprobs.DStateProbs attribute)

 	(westpa.cli.tools.w_stateprobs.WStateProbs attribute)

 	(westpa.tools.core.WESTSubcommand attribute)

 	(westpa.tools.kinetics_tool.WESTSubcommand attribute)

 	(westpa.tools.WESTSubcommand attribute)

 	
 	histnd() (in module westpa.cli.tools.w_eddist)

 	(in module westpa.cli.tools.w_pdist)

 	(in module westpa.fasthist)

I

 	
 	idempotent_announcement_messages (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	IDENTIFY (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	identify() (westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	image_molecules() (westpa.core.h5io.Trajectory method)

 	import_() (in module westpa.core.h5io)

 	in_units_of() (in module westpa.core.h5io)

 	include_arg() (westpa.tools.binning.WESTToolComponent method)

 	(westpa.tools.core.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTToolComponent method)

 	(westpa.tools.iter_range.WESTToolComponent method)

 	(westpa.tools.progress.WESTToolComponent method)

 	(westpa.tools.selected_segs.WESTToolComponent method)

 	(westpa.tools.WESTToolComponent method)

 	include_help_command (westpa.cli.tools.ploterr.WESTMasterCommand attribute)

 	(westpa.cli.tools.plothist.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_direct.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_kinavg.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_kinetics.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_reweight.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_stateprobs.WESTMasterCommand attribute)

 	(westpa.tools.core.WESTMasterCommand attribute)

 	(westpa.tools.WESTMasterCommand attribute)

 	incorporate() (westpa.oldtools.stats.accumulator.RunningStatsAccumulator method)

 	(westpa.oldtools.stats.RunningStatsAccumulator method)

 	index() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	index_dtype (in module westpa.cli.tools.w_assign)

 	(in module westpa.core.binning)

 	(in module westpa.core.binning.assign)

 	(in module westpa.core.kinetics.events)

 	(in module westpa.core.reweight.matrix)

 	(westpa.oldtools.aframe.TransitionEventAccumulator attribute)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator attribute)

 	initial (westpa.analysis.core.Walker property)

 	initial_pcoord() (westpa.cli.core.w_fork.Segment static method)

 	(westpa.cli.core.w_states.Segment static method)

 	(westpa.cli.core.w_succ.Segment static method)

 	(westpa.cli.tools.w_dumpsegs.Segment static method)

 	(westpa.cli.tools.w_trace.Segment static method)

 	(westpa.core.binning.mab_manager.Segment static method)

 	(westpa.core.data_manager.Segment static method)

 	(westpa.core.propagators.executable.Segment static method)

 	(westpa.core.segment.Segment static method)

 	(westpa.core.sim_manager.Segment static method)

 	(westpa.core.states.Segment static method)

 	(westpa.core.we_driver.Segment static method)

 	(westpa.oldtools.aframe.data_reader.Segment static method)

 	initial_state_id (westpa.cli.core.w_fork.Segment property)

 	(westpa.cli.core.w_states.Segment property)

 	(westpa.cli.core.w_succ.Segment property)

 	(westpa.cli.tools.w_dumpsegs.Segment property)

 	(westpa.cli.tools.w_trace.Segment property)

 	(westpa.core.binning.mab_manager.Segment property)

 	(westpa.core.data_manager.Segment property)

 	(westpa.core.propagators.executable.Segment property)

 	(westpa.core.segment.Segment property)

 	(westpa.core.sim_manager.Segment property)

 	(westpa.core.states.Segment property)

 	(westpa.core.we_driver.Segment property)

 	(westpa.oldtools.aframe.data_reader.Segment property)

 	initial_walkers (westpa.analysis.core.Iteration property)

 	(westpa.analysis.core.Run property)

 	initialize() (in module westpa.cli.core.w_init)

 	(in module westpa.cli.core.w_states)

 	(westpa.cli.tools.w_crawl.WESTPACrawler method)

 	(westpa.core.systems.WESTSystem method)

 	(westpa.core.yamlcfg.YAMLSystem method)

 	initialize_simulation() (westpa.core.binning.BinlessSimManager method)

 	(westpa.core.binning.mab_manager.MABSimManager method)

 	(westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.binning.MABSimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	InitialState (class in westpa.cli.core.w_fork)

 	(class in westpa.cli.tools.w_trace)

 	(class in westpa.core.binning.mab_manager)

 	(class in westpa.core.data_manager)

 	(class in westpa.core.propagators.executable)

 	(class in westpa.core.sim_manager)

 	(class in westpa.core.states)

 	(class in westpa.core.we_driver)

 	initpoint_type (westpa.cli.core.w_fork.Segment property)

 	(westpa.cli.core.w_states.Segment property)

 	(westpa.cli.core.w_succ.Segment property)

 	(westpa.cli.tools.w_dumpsegs.Segment property)

 	(westpa.cli.tools.w_trace.Segment property)

 	(westpa.core.binning.mab_manager.Segment property)

 	(westpa.core.data_manager.Segment property)

 	(westpa.core.propagators.executable.Segment property)

 	(westpa.core.segment.Segment property)

 	(westpa.core.sim_manager.Segment property)

 	(westpa.core.states.Segment property)

 	(westpa.core.we_driver.Segment property)

 	(westpa.oldtools.aframe.data_reader.Segment property)

 	initpoint_type_names (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	initpoint_types (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	input_filename (westpa.cli.tools.ploterr.DirectKinetics attribute)

 	(westpa.cli.tools.ploterr.DirectStateprobs attribute)

 	(westpa.cli.tools.ploterr.ReweightKinetics attribute)

 	(westpa.cli.tools.ploterr.ReweightStateprobs attribute)

 	insert() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	install_sigint_handler() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	install_signal_handlers() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	InstantPlotHist (class in westpa.cli.tools.plothist)

 	internal_transport (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	intersection() (westpa.analysis.core.BinUnion method)

 	introduction (westpa.cli.tools.w_ipa.WIPI property)

 	invoke_callbacks() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	is_done() (westpa.work_managers.core.WMFuture method)

 	(westpa.work_managers.mpi.WMFuture method)

 	(westpa.work_managers.processes.WMFuture method)

 	(westpa.work_managers.serial.WMFuture method)

 	(westpa.work_managers.threads.WMFuture method)

 	(westpa.work_managers.zeromq.work_manager.WMFuture method)

 	is_master (westpa.work_managers.core.WorkManager property)

 	(westpa.work_managers.mpi.Worker property)

 	(westpa.work_managers.mpi.WorkManager property)

 	(westpa.work_managers.processes.WorkManager property)

 	(westpa.work_managers.serial.WorkManager property)

 	(westpa.work_managers.threads.WorkManager property)

 	(westpa.work_managers.zeromq.node.ZMQNode property)

 	(westpa.work_managers.zeromq.work_manager.WorkManager property)

 	(westpa.work_managers.zeromq.work_manager.ZMQNode property)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorker property)

 	(westpa.work_managers.zeromq.worker.ZMQWorker property)

 	(westpa.work_managers.zeromq.ZMQNode property)

 	(westpa.work_managers.zeromq.ZMQWorker property)

 	
 	is_npy() (westpa.oldtools.aframe.data_reader.ExtDataReaderMixin method)

 	(westpa.oldtools.aframe.ExtDataReaderMixin method)

 	is_within_directory() (in module westpa.core.h5io)

 	isatty() (westpa.core.propagators.executable.BytesIO method)

 	isiterable() (in module westpa.cli.tools.w_eddist)

 	(in module westpa.cli.tools.w_pdist)

 	islice (class in westpa.work_managers.core)

 	IsNode (class in westpa.work_managers.zeromq.core)

 	(class in westpa.work_managers.zeromq.node)

 	(class in westpa.work_managers.zeromq.work_manager)

 	istate (westpa.cli.tools.w_red.RateCalculator property)

 	istate_status_dtype (in module westpa.core.data_manager)

 	ISTATE_STATUS_FAILED (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	istate_status_names (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	ISTATE_STATUS_PENDING (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	ISTATE_STATUS_PREPARED (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	istate_statuses (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	ISTATE_TYPE_BASIS (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	istate_type_dtype (in module westpa.core.data_manager)

 	ISTATE_TYPE_GENERATED (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	istate_type_names (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	ISTATE_TYPE_RESTART (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	ISTATE_TYPE_START (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	ISTATE_TYPE_UNSET (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	istate_types (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	ISTATE_UNUSED (westpa.cli.core.w_fork.InitialState attribute)

 	(westpa.cli.tools.w_trace.InitialState attribute)

 	(westpa.core.binning.mab_manager.InitialState attribute)

 	(westpa.core.data_manager.InitialState attribute)

 	(westpa.core.propagators.executable.InitialState attribute)

 	(westpa.core.sim_manager.InitialState attribute)

 	(westpa.core.states.InitialState attribute)

 	(westpa.core.we_driver.InitialState attribute)

 	iter_block_iter() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	iter_entry() (westpa.core.h5io.IterBlockedDataset method)

 	iter_group_name() (westpa.core.data_manager.WESTDataManager method)

 	iter_label_values() (westpa.core.h5io.WESTTrajectory method)

 	iter_labels (westpa.core.h5io.WESTTrajectory property)

 	iter_object_name() (westpa.cli.tools.w_assign.WESTPAH5File method)

 	(westpa.core.h5io.WESTPAH5File method)

 	iter_range() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	iter_slice() (westpa.core.h5io.IterBlockedDataset method)

 	Iteration (class in westpa.analysis.core)

 	iteration (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	iteration() (westpa.analysis.core.Run method)

 	iterations (westpa.analysis.core.Run property)

 	IterBlockedDataset (class in westpa.core.h5io)

 	IterRangeMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.iter_range)

 	IterRangeSelection (class in westpa.cli.tools.w_crawl)

 	(class in westpa.cli.tools.w_fluxanl)

 	(class in westpa.cli.tools.w_ntop)

 	(class in westpa.cli.tools.w_pdist)

 	(class in westpa.cli.tools.w_select)

 	(class in westpa.tools)

 	(class in westpa.tools.iter_range)

 	(class in westpa.tools.kinetics_tool)

J

 	
 	join() (westpa.core.h5io.Trajectory method)

 	(westpa.core.h5io.WESTTrajectory method)

 	(westpa.westext.weed.BinCluster.ClusterList method)

 	(westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	
 	join_simple() (westpa.westext.weed.BinCluster.ClusterList method)

 	join_traj() (in module westpa.core.h5io)

K

 	
 	keys() (westpa.cli.tools.w_ipa.WIPIDataset method)

 	(westpa.tools.KineticsIteration method)

 	(westpa.tools.wipi.KineticsIteration method)

 	(westpa.tools.wipi.WIPIDataset method)

 	(westpa.tools.WIPIDataset method)

 	
 	kineticEnergy (westpa.core.h5io.Frames attribute)

 	KineticsAnalysisMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.kinetics)

 	KineticsIteration (class in westpa.tools)

 	(class in westpa.tools.wipi)

L

 	
 	label_axes() (in module westpa.core.h5io)

 	label_values (westpa.core.h5io.WESTTrajectory property)

 	labeled_flux_to_rate() (in module westpa.core.kinetics)

 	(in module westpa.core.kinetics.matrates)

 	labels (westpa.core.binning.assign.RecursiveBinMapper property)

 	(westpa.core.binning.RecursiveBinMapper property)

 	largest_allowed_weight (westpa.core.binning.mab_driver.WEDriver attribute)

 	(westpa.core.we_driver.WEDriver attribute)

 	linregress() (in module westpa.core.progress)

 	list_schemes (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	
 	load() (westpa.core.h5io.Trajectory static method)

 	load_and_validate_data() (westpa.cli.tools.ploterr.GenericIntervalSubcommand method)

 	load_config_from_west() (westpa.cli.tools.w_assign.WAssign method)

 	load_module() (in module westpa.core.extloader)

 	load_npy_or_text() (in module westpa.oldtools.files)

 	(westpa.oldtools.aframe.data_reader.ExtDataReaderMixin method)

 	(westpa.oldtools.aframe.ExtDataReaderMixin method)

 	load_plugins() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	load_state_file() (westpa.cli.tools.w_assign.WAssign method)

 	load_states_from_function() (westpa.cli.tools.w_assign.WAssign method)

 	load_trajectory() (in module westpa.core.propagators.executable)

 	load_west() (in module westpa.core.h5io)

M

 	
 	M1 (westpa.core.kinetics.rate_averaging.StreamingStats1D attribute)

 	(westpa.core.kinetics.rate_averaging.StreamingStats2D attribute)

 	(westpa.core.kinetics.rate_averaging.StreamingStatsTuple attribute)

 	M2 (westpa.core.kinetics.rate_averaging.StreamingStats1D attribute)

 	(westpa.core.kinetics.rate_averaging.StreamingStats2D attribute)

 	(westpa.core.kinetics.rate_averaging.StreamingStatsTuple attribute)

 	MABBinMapper (class in westpa.core.binning)

 	(class in westpa.core.binning.mab)

 	(class in westpa.core.binning.mab_manager)

 	MABDriver (class in westpa.core.binning)

 	(class in westpa.core.binning.mab_driver)

 	MABSimManager (class in westpa.core.binning)

 	(class in westpa.core.binning.mab_manager)

 	main() (westpa.cli.tools.w_assign.WESTParallelTool method)

 	(westpa.cli.tools.w_bins.WESTTool method)

 	(westpa.cli.tools.w_crawl.WESTParallelTool method)

 	(westpa.cli.tools.w_direct.WESTParallelTool method)

 	(westpa.cli.tools.w_dumpsegs.WESTTool method)

 	(westpa.cli.tools.w_eddist.WESTParallelTool method)

 	(westpa.cli.tools.w_fluxanl.WESTTool method)

 	(westpa.cli.tools.w_ipa.WESTParallelTool method)

 	(westpa.cli.tools.w_kinavg.WESTParallelTool method)

 	(westpa.cli.tools.w_kinetics.WESTParallelTool method)

 	(westpa.cli.tools.w_multi_west.WESTMultiTool method)

 	(westpa.cli.tools.w_multi_west.WESTTool method)

 	(westpa.cli.tools.w_ntop.WESTTool method)

 	(westpa.cli.tools.w_pdist.WESTParallelTool method)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTParallelTool method)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_red.WESTParallelTool method)

 	(westpa.cli.tools.w_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_select.WESTParallelTool method)

 	(westpa.cli.tools.w_stateprobs.WESTParallelTool method)

 	(westpa.cli.tools.w_trace.WESTTool method)

 	(westpa.tools.core.WESTMultiTool method)

 	(westpa.tools.core.WESTParallelTool method)

 	(westpa.tools.core.WESTTool method)

 	(westpa.tools.WESTMultiTool method)

 	(westpa.tools.WESTParallelTool method)

 	(westpa.tools.WESTTool method)

 	make_image() (westpa.cli.tools.plothist.NonUniformImage method)

 	make_internal_endpoint() (westpa.work_managers.zeromq.core.ZMQCore class method)

 	(westpa.work_managers.zeromq.node.ZMQCore class method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore class method)

 	(westpa.work_managers.zeromq.worker.ZMQCore class method)

 	(westpa.work_managers.zeromq.ZMQCore class method)

 	make_ipc_endpoint() (westpa.work_managers.zeromq.core.ZMQCore class method)

 	(westpa.work_managers.zeromq.node.ZMQCore class method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore class method)

 	(westpa.work_managers.zeromq.worker.ZMQCore class method)

 	(westpa.work_managers.zeromq.ZMQCore class method)

 	make_molecules_whole() (westpa.core.h5io.Trajectory method)

 	make_parser() (westpa.cli.tools.w_bins.WESTTool method)

 	(westpa.cli.tools.w_dumpsegs.WESTTool method)

 	(westpa.cli.tools.w_fluxanl.WESTTool method)

 	(westpa.cli.tools.w_multi_west.WESTTool method)

 	(westpa.cli.tools.w_ntop.WESTTool method)

 	(westpa.cli.tools.w_trace.WESTTool method)

 	(westpa.tools.core.WESTTool method)

 	(westpa.tools.WESTTool method)

 	make_parser_and_process() (westpa.cli.tools.w_assign.WESTParallelTool method)

 	(westpa.cli.tools.w_bins.WESTTool method)

 	(westpa.cli.tools.w_crawl.WESTParallelTool method)

 	(westpa.cli.tools.w_direct.WESTParallelTool method)

 	(westpa.cli.tools.w_dumpsegs.WESTTool method)

 	(westpa.cli.tools.w_eddist.WESTParallelTool method)

 	(westpa.cli.tools.w_fluxanl.WESTTool method)

 	(westpa.cli.tools.w_ipa.WESTParallelTool method)

 	(westpa.cli.tools.w_kinavg.WESTParallelTool method)

 	(westpa.cli.tools.w_kinetics.WESTParallelTool method)

 	(westpa.cli.tools.w_multi_west.WESTMultiTool method)

 	(westpa.cli.tools.w_multi_west.WESTTool method)

 	(westpa.cli.tools.w_ntop.WESTTool method)

 	(westpa.cli.tools.w_pdist.WESTParallelTool method)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTParallelTool method)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_red.WESTParallelTool method)

 	(westpa.cli.tools.w_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_select.WESTParallelTool method)

 	(westpa.cli.tools.w_stateprobs.WESTParallelTool method)

 	(westpa.cli.tools.w_trace.WESTTool method)

 	(westpa.tools.core.WESTMultiTool method)

 	(westpa.tools.core.WESTParallelTool method)

 	(westpa.tools.core.WESTTool method)

 	(westpa.tools.WESTMultiTool method)

 	(westpa.tools.WESTParallelTool method)

 	(westpa.tools.WESTTool method)

 	make_tcp_endpoint() (westpa.work_managers.zeromq.core.ZMQCore class method)

 	(westpa.work_managers.zeromq.node.ZMQCore class method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore class method)

 	(westpa.work_managers.zeromq.worker.ZMQCore class method)

 	(westpa.work_managers.zeromq.ZMQCore class method)

 	make_work_manager() (in module westpa.cli.core.w_init)

 	(in module westpa.cli.core.w_run)

 	(in module westpa.cli.core.w_states)

 	(in module westpa.work_managers)

 	(in module westpa.work_managers.environment)

 	(westpa.work_managers.environment.WMEnvironment method)

 	makepath() (in module westpa.core.data_manager)

 	(westpa.core.data_manager.ExecutablePropagator static method)

 	(westpa.core.propagators.executable.ExecutablePropagator static method)

 	Manager (class in westpa.work_managers.mpi)

 	map_binless() (in module westpa.core.binning)

 	map_mab() (in module westpa.core.binning)

 	(in module westpa.core.binning.mab)

 	mapper_from_dict() (in module westpa.tools)

 	(in module westpa.tools.binning)

 	mapper_from_expr() (in module westpa.tools.binning)

 	(westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	mapper_from_function() (in module westpa.tools.binning)

 	mapper_from_hdf5() (in module westpa.tools.binning)

 	mapper_from_system() (in module westpa.tools.binning)

 	mapper_from_yaml() (in module westpa.tools.binning)

 	MASTER_BEACON (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	max (westpa.core.sim_manager.timedelta attribute)

 	max_acc (westpa.oldtools.aframe.TransitionEventAccumulator attribute)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator attribute)

 	max_iter_segs_in_range() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	maxlen (westpa.work_managers.mpi.deque attribute)

 	(westpa.work_managers.zeromq.work_manager.deque attribute)

 	mcbs_ci() (in module westpa.mclib)

 	mcbs_ci_correl() (in module westpa.cli.tools.w_direct)

 	(in module westpa.cli.tools.w_reweight)

 	(in module westpa.mclib)

 	mcbs_correltime() (in module westpa.mclib)

 	MCBSMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.mcbs)

 	mean (westpa.core.kinetics.rate_averaging.StreamingStats1D attribute)

 	(westpa.core.kinetics.rate_averaging.StreamingStats2D attribute)

 	mean() (westpa.oldtools.stats.accumulator.RunningStatsAccumulator method)

 	(westpa.oldtools.stats.edfs.EDF method)

 	(westpa.oldtools.stats.RunningStatsAccumulator method)

 	
 	median() (westpa.oldtools.stats.edfs.EDF method)

 	Message (class in westpa.work_managers.zeromq.core)

 	(class in westpa.work_managers.zeromq.node)

 	(class in westpa.work_managers.zeromq.work_manager)

 	(class in westpa.work_managers.zeromq.worker)

 	message_validation() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	microseconds (westpa.core.sim_manager.timedelta attribute)

 	min (westpa.core.sim_manager.timedelta attribute)

 	
 module

 	westpa.analysis.core

 	westpa.analysis.statistics

 	westpa.analysis.trajectories

 	westpa.cli.core.w_fork

 	westpa.cli.core.w_init

 	westpa.cli.core.w_run

 	westpa.cli.core.w_states

 	westpa.cli.core.w_succ

 	westpa.cli.core.w_truncate

 	westpa.cli.tools.ploterr

 	westpa.cli.tools.plothist

 	westpa.cli.tools.w_assign

 	westpa.cli.tools.w_bins

 	westpa.cli.tools.w_crawl

 	westpa.cli.tools.w_direct

 	westpa.cli.tools.w_dumpsegs

 	westpa.cli.tools.w_eddist

 	westpa.cli.tools.w_fluxanl

 	westpa.cli.tools.w_ipa

 	westpa.cli.tools.w_kinavg

 	westpa.cli.tools.w_kinetics

 	westpa.cli.tools.w_multi_west

 	westpa.cli.tools.w_ntop

 	westpa.cli.tools.w_pdist

 	westpa.cli.tools.w_postanalysis_matrix

 	westpa.cli.tools.w_postanalysis_reweight

 	westpa.cli.tools.w_red

 	westpa.cli.tools.w_reweight

 	westpa.cli.tools.w_select

 	westpa.cli.tools.w_stateprobs

 	westpa.cli.tools.w_trace

 	westpa.core

 	westpa.core.binning

 	westpa.core.binning.assign, [1]

 	westpa.core.binning.bins, [1]

 	westpa.core.binning.mab

 	westpa.core.binning.mab_driver

 	westpa.core.binning.mab_manager

 	westpa.core.data_manager

 	westpa.core.extloader

 	westpa.core.h5io

 	westpa.core.kinetics

 	westpa.core.kinetics.events

 	westpa.core.kinetics.matrates

 	westpa.core.kinetics.rate_averaging

 	westpa.core.progress

 	westpa.core.propagators

 	westpa.core.propagators.executable

 	westpa.core.reweight

 	westpa.core.reweight.matrix

 	westpa.core.segment

 	westpa.core.sim_manager

 	westpa.core.states

 	westpa.core.systems

 	westpa.core.textio

 	westpa.core.we_driver

 	westpa.core.wm_ops

 	westpa.core.yamlcfg, [1]

 	westpa.fasthist

 	westpa.mclib

 	westpa.oldtools

 	westpa.oldtools.aframe

 	westpa.oldtools.aframe.atool

 	westpa.oldtools.aframe.base_mixin

 	westpa.oldtools.aframe.binning

 	westpa.oldtools.aframe.data_reader

 	westpa.oldtools.aframe.iter_range

 	westpa.oldtools.aframe.kinetics

 	westpa.oldtools.aframe.mcbs

 	westpa.oldtools.aframe.output

 	westpa.oldtools.aframe.plotting

 	westpa.oldtools.aframe.trajwalker

 	westpa.oldtools.aframe.transitions

 	westpa.oldtools.cmds

 	westpa.oldtools.files

 	westpa.oldtools.miscfn

 	westpa.oldtools.stats

 	westpa.oldtools.stats.accumulator

 	westpa.oldtools.stats.edfs

 	westpa.oldtools.stats.mcbs

 	westpa.tools

 	westpa.tools.binning

 	westpa.tools.core

 	westpa.tools.data_reader

 	westpa.tools.dtypes

 	westpa.tools.iter_range

 	westpa.tools.kinetics_tool

 	westpa.tools.plot

 	westpa.tools.progress

 	westpa.tools.selected_segs

 	westpa.tools.wipi

 	westpa.trajtree

 	westpa.trajtree.trajtree

 	westpa.westext

 	westpa.westext.adaptvoronoi

 	westpa.westext.adaptvoronoi.adaptVor_driver

 	westpa.westext.weed

 	westpa.westext.weed.BinCluster

 	westpa.westext.weed.ProbAdjustEquil

 	westpa.westext.weed.UncertMath

 	westpa.westext.weed.weed_driver

 	westpa.westext.wess

 	westpa.westext.wess.ProbAdjust

 	westpa.westext.wess.wess_driver

 	westpa.work_managers

 	westpa.work_managers.core

 	westpa.work_managers.environment

 	westpa.work_managers.mpi

 	westpa.work_managers.processes

 	westpa.work_managers.serial

 	westpa.work_managers.threads

 	westpa.work_managers.zeromq

 	westpa.work_managers.zeromq.core

 	westpa.work_managers.zeromq.node

 	westpa.work_managers.zeromq.work_manager

 	westpa.work_managers.zeromq.worker

 	moment() (westpa.oldtools.stats.edfs.EDF method)

 	mouseover (westpa.cli.tools.plothist.NonUniformImage attribute)

 	MPIWorkManager (class in westpa.work_managers.mpi)

 	MultiDSSpec (class in westpa.core.h5io)

 	(class in westpa.tools.data_reader)

N

 	
 	n (westpa.core.kinetics.rate_averaging.StreamingStats1D attribute)

 	(westpa.core.kinetics.rate_averaging.StreamingStats2D attribute)

 	(westpa.core.kinetics.rate_averaging.StreamingStatsTuple attribute)

 	n_atoms (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	n_chains (westpa.core.h5io.Trajectory property)

 	n_frames (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	n_istates_needed (westpa.core.binning.mab_driver.WEDriver property)

 	(westpa.core.we_driver.WEDriver property)

 	n_iter (westpa.trajtree.trajtree.trajnode attribute)

 	n_iter_blocks() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	n_iter_dtype (in module westpa.cli.core.w_fork)

 	(in module westpa.cli.tools.w_fluxanl)

 	(in module westpa.cli.tools.w_multi_west)

 	(in module westpa.cli.tools.w_ntop)

 	(in module westpa.cli.tools.w_select)

 	(in module westpa.cli.tools.w_trace)

 	(in module westpa.core.data_manager)

 	(in module westpa.tools.dtypes)

 	n_iters (westpa.cli.tools.w_red.RateCalculator property)

 	n_recycled_segs (westpa.core.binning.mab_driver.WEDriver property)

 	(westpa.core.we_driver.WEDriver property)

 	n_residues (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	n_workers (westpa.work_managers.zeromq.work_manager.ZMQWorkManager property)

 	(westpa.work_managers.zeromq.ZMQWorkManager property)

 	NAK (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	namedtuple() (in module westpa.core.kinetics.rate_averaging)

 	nested_to_flat_matrix() (in module westpa.core.kinetics)

 	(in module westpa.core.kinetics.matrates)

 	nested_to_flat_vector() (in module westpa.core.kinetics)

 	(in module westpa.core.kinetics.matrates)

 	new_iteration() (westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.we_driver.WEDriver method)

 	
 	new_operation() (westpa.core.progress.ProgressIndicator method)

 	(westpa.tools.progress.ProgressIndicator method)

 	new_pcoord_array() (westpa.core.systems.WESTSystem method)

 	(westpa.core.yamlcfg.YAMLSystem method)

 	new_region_set() (westpa.core.systems.WESTSystem method)

 	(westpa.core.yamlcfg.YAMLSystem method)

 	NewWeightEntry (class in westpa.cli.tools.w_fluxanl)

 	(class in westpa.core.data_manager)

 	(class in westpa.core.we_driver)

 	next (westpa.analysis.core.Iteration property)

 	next_expiration() (westpa.work_managers.zeromq.core.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.node.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.work_manager.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.worker.PassiveMultiTimer method)

 	next_expiration_in() (westpa.work_managers.zeromq.core.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.node.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.work_manager.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.worker.PassiveMultiTimer method)

 	next_iter_assignments (westpa.core.binning.mab_driver.WEDriver property)

 	(westpa.core.we_driver.WEDriver property)

 	next_iter_segments (westpa.core.binning.mab_driver.WEDriver property)

 	(westpa.core.we_driver.WEDriver property)

 	NonUniformImage (class in westpa.cli.tools.plothist)

 	nop() (in module westpa.core.progress)

 	NopMapper (class in westpa.core.binning)

 	(class in westpa.core.binning.assign)

 	(class in westpa.core.systems)

 	(class in westpa.core.yamlcfg)

 	normalize_dataset_options() (in module westpa.core.data_manager)

 	normhistnd() (in module westpa.cli.tools.plothist)

 	(in module westpa.cli.tools.w_eddist)

 	(in module westpa.cli.tools.w_pdist)

 	(in module westpa.fasthist)

 	npy_data_loader() (in module westpa.core.propagators.executable)

 	npy_to_h5dataset() (westpa.oldtools.aframe.data_reader.ExtDataReaderMixin method)

 	(westpa.oldtools.aframe.ExtDataReaderMixin method)

 	num_bins (westpa.analysis.core.Iteration property)

 	num_iterations (westpa.analysis.core.Run property)

 	num_segments (westpa.analysis.core.Iteration property)

 	(westpa.analysis.core.Run property)

 	num_snapshots (westpa.analysis.core.Walker property)

 	num_walkers (westpa.analysis.core.Iteration property)

 	(westpa.analysis.core.Run property)

 	NumericTextOutputFormatter (class in westpa.core.textio)

 	nw_source_dtype (in module westpa.core.data_manager)

 	NW_SOURCE_RECYCLED (westpa.cli.tools.w_fluxanl.NewWeightEntry attribute)

 	(westpa.core.data_manager.NewWeightEntry attribute)

 	(westpa.core.we_driver.NewWeightEntry attribute)

O

 	
 	open() (westpa.analysis.core.Run class method)

 	(westpa.cli.tools.w_assign.WESTDataReader method)

 	(westpa.cli.tools.w_bins.WESTDataReader method)

 	(westpa.cli.tools.w_crawl.WESTDataReader method)

 	(westpa.cli.tools.w_dumpsegs.WESTDataReader method)

 	(westpa.cli.tools.w_fluxanl.WESTDataReader method)

 	(westpa.cli.tools.w_ipa.WESTDataReader method)

 	(westpa.cli.tools.w_ntop.WESTDataReader method)

 	(westpa.cli.tools.w_pdist.WESTDataReader method)

 	(westpa.cli.tools.w_select.WESTDataReader method)

 	(westpa.cli.tools.w_trace.WESTDataReader method)

 	(westpa.tools.data_reader.WESTDataReader method)

 	(westpa.tools.kinetics_tool.WESTDataReader method)

 	(westpa.tools.WESTDataReader method)

 	open_analysis_backing() (westpa.cli.core.w_succ.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.atool.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.WESTAnalysisTool method)

 	
 	open_assignments() (westpa.cli.tools.w_direct.AverageCommands method)

 	(westpa.cli.tools.w_reweight.AverageCommands method)

 	(westpa.tools.kinetics_tool.AverageCommands method)

 	open_backing() (westpa.core.data_manager.WESTDataManager method)

 	open_files() (westpa.cli.tools.w_direct.AverageCommands method)

 	(westpa.cli.tools.w_direct.DKinetics method)

 	(westpa.cli.tools.w_kinetics.DKinetics method)

 	(westpa.cli.tools.w_multi_west.WMultiWest method)

 	(westpa.cli.tools.w_reweight.AverageCommands method)

 	(westpa.tools.kinetics_tool.AverageCommands method)

 	openmm_boxes() (westpa.core.h5io.Trajectory method)

 	openmm_positions() (westpa.core.h5io.Trajectory method)

 	operation (westpa.core.progress.ProgressIndicator property)

 	(westpa.tools.progress.ProgressIndicator property)

 	output_format_version (westpa.cli.tools.w_fluxanl.WFluxanlTool attribute)

 	output_map() (in module westpa.core.binning.assign)

 	output_tdat_chunksize (westpa.oldtools.aframe.TransitionEventAccumulator attribute)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator attribute)

P

 	
 	PAAverage (class in westpa.cli.tools.w_postanalysis_reweight)

 	PAMatrix (class in westpa.cli.tools.w_postanalysis_matrix)

 	pare_basis_initial_states() (in module westpa.core.binning.mab_manager)

 	(in module westpa.core.states)

 	parent (westpa.analysis.core.Walker property)

 	parent_id_dsspec (westpa.cli.tools.w_assign.WESTDataReader property)

 	(westpa.cli.tools.w_bins.WESTDataReader property)

 	(westpa.cli.tools.w_crawl.WESTDataReader property)

 	(westpa.cli.tools.w_dumpsegs.WESTDataReader property)

 	(westpa.cli.tools.w_fluxanl.WESTDataReader property)

 	(westpa.cli.tools.w_ipa.WESTDataReader property)

 	(westpa.cli.tools.w_ntop.WESTDataReader property)

 	(westpa.cli.tools.w_pdist.WESTDataReader property)

 	(westpa.cli.tools.w_select.WESTDataReader property)

 	(westpa.cli.tools.w_trace.WESTDataReader property)

 	(westpa.tools.data_reader.WESTDataReader property)

 	(westpa.tools.kinetics_tool.WESTDataReader property)

 	(westpa.tools.WESTDataReader property)

 	parent_ids (westpa.core.h5io.WESTTrajectory property)

 	parse_bin_range() (westpa.oldtools.aframe.kinetics.KineticsAnalysisMixin method)

 	(westpa.oldtools.aframe.KineticsAnalysisMixin method)

 	parse_binspec() (westpa.cli.tools.w_eddist.WEDDist static method)

 	(westpa.cli.tools.w_pdist.WPDist static method)

 	parse_cmdline_states() (westpa.cli.tools.w_assign.WAssign method)

 	parse_dataset_string() (westpa.cli.tools.w_trace.WTraceTool method)

 	parse_dimspec() (westpa.cli.tools.plothist.PlotHistBase method)

 	parse_from_yaml() (westpa.cli.tools.w_multi_west.WESTMultiTool method)

 	(westpa.tools.core.WESTMultiTool method)

 	(westpa.tools.WESTMultiTool method)

 	parse_int_list() (in module westpa.oldtools.aframe.data_reader)

 	(in module westpa.oldtools.miscfn)

 	parse_pcoord_value() (in module westpa.cli.tools.w_assign)

 	parse_range() (westpa.cli.tools.ploterr.CommonPloterrs method)

 	(westpa.cli.tools.plothist.PlotHistBase method)

 	parse_segsel_file() (westpa.tools.SegSelector method)

 	(westpa.tools.selected_segs.SegSelector method)

 	PassiveMultiTimer (class in westpa.work_managers.zeromq.core)

 	(class in westpa.work_managers.zeromq.node)

 	(class in westpa.work_managers.zeromq.work_manager)

 	(class in westpa.work_managers.zeromq.worker)

 	PassiveTimer (class in westpa.work_managers.zeromq.core)

 	past (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	pcoord_formats (westpa.cli.tools.w_trace.WTraceTool attribute)

 	pcoord_loader() (in module westpa.core.propagators.executable)

 	pcoords (westpa.analysis.core.Iteration property)

 	(westpa.analysis.core.Walker property)

 	(westpa.core.h5io.WESTTrajectory property)

 	pickle_and_hash() (westpa.core.binning.assign.BinMapper method)

 	pickle_data_loader() (in module westpa.core.propagators.executable)

 	PickleError, [1]

 	PiecewiseBinMapper (class in westpa.core.binning)

 	(class in westpa.core.binning.assign)

 	plot() (westpa.cli.tools.ploterr.Plotter method)

 	(westpa.cli.tools.w_ipa.Plotter method)

 	(westpa.tools.plot.Plotter method)

 	(westpa.tools.Plotter method)

 	(westpa.tools.wipi.Plotter method)

 	plot_color() (westpa.cli.tools.ploterr.DirectStateprobs method)

 	plot_flux() (westpa.cli.tools.ploterr.DirectKinetics method)

 	plot_pop() (westpa.cli.tools.ploterr.DirectStateprobs method)

 	plot_rate() (westpa.cli.tools.ploterr.DirectKinetics method)

 	PloterrsTool (class in westpa.cli.tools.ploterr)

 	PlotHistBase (class in westpa.cli.tools.plothist)

 	PlotHistTool (class in westpa.cli.tools.plothist)

 	PlotSupports2D (class in westpa.cli.tools.plothist)

 	Plotter (class in westpa.cli.tools.ploterr)

 	(class in westpa.cli.tools.w_ipa)

 	(class in westpa.tools)

 	(class in westpa.tools.plot)

 	(class in westpa.tools.wipi)

 	PlottingMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.plotting)

 	pop() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	pop_assign() (in module westpa.core.kinetics.rate_averaging)

 	pop_output_filename (westpa.cli.tools.ploterr.DirectStateprobs attribute)

 	(westpa.cli.tools.ploterr.ReweightStateprobs attribute)

 	popleft() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	populate_initial() (westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.we_driver.WEDriver method)

 	populations (westpa.cli.tools.w_red.RateCalculator property)

 	post_iter() (in module westpa.core.wm_ops)

 	post_propagation() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	post_we() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	potentialEnergy (westpa.core.h5io.Frames attribute)

 	pre_propagation() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	pre_we() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	preload_config_files (westpa.core.yamlcfg.YAMLConfig attribute)

 	prep_iter() (in module westpa.core.wm_ops)

 	prepare_backing() (westpa.core.data_manager.WESTDataManager method)

 	prepare_file_system() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	prepare_iteration() (westpa.core.binning.BinlessSimManager method)

 	(westpa.core.binning.mab_manager.MABSimManager method)

 	(westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.binning.MABSimManager method)

 	(westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	(westpa.core.propagators.executable.WESTPropagator method)

 	(westpa.core.propagators.WESTPropagator method)

 	(westpa.core.sim_manager.WESimManager method)

 	prepare_new_iteration() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	(westpa.westext.adaptvoronoi.AdaptiveVoronoiDriver method)

 	(westpa.westext.adaptvoronoi.adaptVor_driver.AdaptiveVoronoiDriver method)

 	(westpa.westext.weed.weed_driver.WEEDDriver method)

 	(westpa.westext.weed.WEEDDriver method)

 	(westpa.westext.wess.wess_driver.WESSDriver method)

 	(westpa.westext.wess.WESSDriver method)

 	prepare_run() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	(westpa.core.systems.WESTSystem method)

 	(westpa.core.yamlcfg.YAMLSystem method)

 	prepare_segment_restarts() (westpa.core.data_manager.WESTDataManager method)

 	prev (westpa.analysis.core.Iteration property)

 	print_averages() (westpa.cli.tools.w_direct.AverageCommands method)

 	(westpa.cli.tools.w_reweight.AverageCommands method)

 	(westpa.tools.kinetics_tool.AverageCommands method)

 	prob_adjust() (in module westpa.westext.wess)

 	(in module westpa.westext.wess.ProbAdjust)

 	(in module westpa.westext.wess.wess_driver)

 	probAdjustEquil() (in module westpa.westext.weed)

 	(in module westpa.westext.weed.ProbAdjustEquil)

 	(in module westpa.westext.weed.weed_driver)

 	process_all_args() (westpa.tools.binning.WESTToolComponent method)

 	(westpa.tools.core.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTToolComponent method)

 	(westpa.tools.iter_range.WESTToolComponent method)

 	(westpa.tools.progress.WESTToolComponent method)

 	(westpa.tools.selected_segs.WESTToolComponent method)

 	(westpa.tools.WESTToolComponent method)

 	process_args() (westpa.cli.core.w_succ.WESTAnalysisTool method)

 	(westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.cli.tools.ploterr.CommonPloterrs method)

 	(westpa.cli.tools.ploterr.DirectKinetics method)

 	(westpa.cli.tools.ploterr.DirectStateprobs method)

 	(westpa.cli.tools.ploterr.GenericIntervalSubcommand method)

 	(westpa.cli.tools.ploterr.ProgressIndicatorComponent method)

 	(westpa.cli.tools.ploterr.WESTMasterCommand method)

 	(westpa.cli.tools.plothist.AveragePlotHist method)

 	(westpa.cli.tools.plothist.EvolutionPlotHist method)

 	(westpa.cli.tools.plothist.InstantPlotHist method)

 	(westpa.cli.tools.plothist.PlotHistBase method)

 	(westpa.cli.tools.plothist.PlotSupports2D method)

 	(westpa.cli.tools.plothist.WESTMasterCommand method)

 	(westpa.cli.tools.w_assign.BinMappingComponent method)

 	(westpa.cli.tools.w_assign.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_assign.WAssign method)

 	(westpa.cli.tools.w_assign.WESTDataReader method)

 	(westpa.cli.tools.w_assign.WESTDSSynthesizer method)

 	(westpa.cli.tools.w_assign.WESTParallelTool method)

 	(westpa.cli.tools.w_bins.BinMappingComponent method)

 	(westpa.cli.tools.w_bins.WBinTool method)

 	(westpa.cli.tools.w_bins.WESTDataReader method)

 	(westpa.cli.tools.w_bins.WESTTool method)

 	(westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_crawl.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_crawl.WCrawl method)

 	(westpa.cli.tools.w_crawl.WESTDataReader method)

 	(westpa.cli.tools.w_crawl.WESTParallelTool method)

 	(westpa.cli.tools.w_direct.AverageCommands method)

 	(westpa.cli.tools.w_direct.WESTKineticsBase method)

 	(westpa.cli.tools.w_direct.WESTMasterCommand method)

 	(westpa.cli.tools.w_direct.WESTParallelTool method)

 	(westpa.cli.tools.w_dumpsegs.WDumpSegs method)

 	(westpa.cli.tools.w_dumpsegs.WESTDataReader method)

 	(westpa.cli.tools.w_dumpsegs.WESTTool method)

 	(westpa.cli.tools.w_eddist.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_eddist.WEDDist method)

 	(westpa.cli.tools.w_eddist.WESTParallelTool method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.WESTDataReader method)

 	(westpa.cli.tools.w_fluxanl.WESTTool method)

 	(westpa.cli.tools.w_fluxanl.WFluxanlTool method)

 	(westpa.cli.tools.w_ipa.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_ipa.WESTDataReader method)

 	(westpa.cli.tools.w_ipa.WESTParallelTool method)

 	(westpa.cli.tools.w_ipa.WIPI method)

 	(westpa.cli.tools.w_kinavg.WESTMasterCommand method)

 	(westpa.cli.tools.w_kinavg.WESTParallelTool method)

 	(westpa.cli.tools.w_kinetics.WESTMasterCommand method)

 	(westpa.cli.tools.w_kinetics.WESTParallelTool method)

 	(westpa.cli.tools.w_multi_west.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_multi_west.WESTMultiTool method)

 	(westpa.cli.tools.w_multi_west.WESTTool method)

 	(westpa.cli.tools.w_multi_west.WMultiWest method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_ntop.WESTDataReader method)

 	(westpa.cli.tools.w_ntop.WESTTool method)

 	(westpa.cli.tools.w_ntop.WNTopTool method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_pdist.WESTDataReader method)

 	(westpa.cli.tools.w_pdist.WESTDSSynthesizer method)

 	(westpa.cli.tools.w_pdist.WESTParallelTool method)

 	(westpa.cli.tools.w_pdist.WESTWDSSynthesizer method)

 	(westpa.cli.tools.w_pdist.WPDist method)

 	(westpa.cli.tools.w_postanalysis_matrix.RWMatrix method)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTMasterCommand method)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTParallelTool method)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTMasterCommand method)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_red.WESTParallelTool method)

 	(westpa.cli.tools.w_reweight.AverageCommands method)

 	(westpa.cli.tools.w_reweight.RWMatrix method)

 	(westpa.cli.tools.w_reweight.RWReweight method)

 	(westpa.cli.tools.w_reweight.WESTKineticsBase method)

 	(westpa.cli.tools.w_reweight.WESTMasterCommand method)

 	(westpa.cli.tools.w_reweight.WESTParallelTool method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.cli.tools.w_select.ProgressIndicatorComponent method)

 	(westpa.cli.tools.w_select.WESTDataReader method)

 	(westpa.cli.tools.w_select.WESTParallelTool method)

 	(westpa.cli.tools.w_select.WSelectTool method)

 	(westpa.cli.tools.w_stateprobs.WESTMasterCommand method)

 	(westpa.cli.tools.w_stateprobs.WESTParallelTool method)

 	(westpa.cli.tools.w_trace.WESTDataReader method)

 	(westpa.cli.tools.w_trace.WESTTool method)

 	(westpa.cli.tools.w_trace.WTraceTool method)

 	(westpa.oldtools.aframe.AnalysisMixin method)

 	(westpa.oldtools.aframe.atool.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.base_mixin.AnalysisMixin method)

 	(westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.binning.AnalysisMixin method)

 	(westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	(westpa.oldtools.aframe.data_reader.AnalysisMixin method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.ExtDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.ExtDataReaderMixin method)

 	(westpa.oldtools.aframe.iter_range.AnalysisMixin method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.oldtools.aframe.kinetics.AnalysisMixin method)

 	(westpa.oldtools.aframe.kinetics.KineticsAnalysisMixin method)

 	(westpa.oldtools.aframe.KineticsAnalysisMixin method)

 	(westpa.oldtools.aframe.mcbs.AnalysisMixin method)

 	(westpa.oldtools.aframe.mcbs.MCBSMixin method)

 	(westpa.oldtools.aframe.MCBSMixin method)

 	(westpa.oldtools.aframe.output.AnalysisMixin method)

 	(westpa.oldtools.aframe.plotting.AnalysisMixin method)

 	(westpa.oldtools.aframe.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.AnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	(westpa.tools.BinMappingComponent method)

 	(westpa.tools.binning.BinMappingComponent method)

 	(westpa.tools.binning.WESTToolComponent method)

 	(westpa.tools.core.WESTMasterCommand method)

 	(westpa.tools.core.WESTMultiTool method)

 	(westpa.tools.core.WESTParallelTool method)

 	(westpa.tools.core.WESTTool method)

 	(westpa.tools.core.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTDataReader method)

 	(westpa.tools.data_reader.WESTDSSynthesizer method)

 	(westpa.tools.data_reader.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTWDSSynthesizer method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.iter_range.WESTToolComponent method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.AverageCommands method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.ProgressIndicatorComponent method)

 	(westpa.tools.kinetics_tool.WESTDataReader method)

 	(westpa.tools.kinetics_tool.WESTKineticsBase method)

 	(westpa.tools.progress.ProgressIndicatorComponent method)

 	(westpa.tools.progress.WESTToolComponent method)

 	(westpa.tools.ProgressIndicatorComponent method)

 	(westpa.tools.SegSelector method)

 	(westpa.tools.selected_segs.SegSelector method)

 	(westpa.tools.selected_segs.WESTToolComponent method)

 	(westpa.tools.WESTDataReader method)

 	(westpa.tools.WESTDSSynthesizer method)

 	(westpa.tools.WESTMasterCommand method)

 	(westpa.tools.WESTMultiTool method)

 	(westpa.tools.WESTParallelTool method)

 	(westpa.tools.WESTTool method)

 	(westpa.tools.WESTToolComponent method)

 	(westpa.tools.WESTWDSSynthesizer method)

 	
 	process_common_output_args() (westpa.cli.core.w_succ.CommonOutputMixin method)

 	(westpa.oldtools.aframe.CommonOutputMixin method)

 	(westpa.oldtools.aframe.output.CommonOutputMixin method)

 	process_config() (westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	(westpa.core.we_driver.WEDriver method)

 	process_iter_chunk() (in module westpa.core.kinetics.rate_averaging)

 	process_iter_result() (westpa.cli.tools.w_crawl.WESTPACrawler method)

 	process_wm_args() (in module westpa.work_managers.environment)

 	(westpa.work_managers.environment.WMEnvironment method)

 	ProcessWorkManager (class in westpa.work_managers)

 	(class in westpa.work_managers.processes)

 	prog (westpa.cli.tools.ploterr.PloterrsTool attribute)

 	(westpa.cli.tools.plothist.PlotHistTool attribute)

 	(westpa.cli.tools.w_assign.WAssign attribute)

 	(westpa.cli.tools.w_bins.WBinTool attribute)

 	(westpa.cli.tools.w_bins.WESTTool attribute)

 	(westpa.cli.tools.w_crawl.WCrawl attribute)

 	(westpa.cli.tools.w_direct.WDirect attribute)

 	(westpa.cli.tools.w_dumpsegs.WDumpSegs attribute)

 	(westpa.cli.tools.w_dumpsegs.WESTTool attribute)

 	(westpa.cli.tools.w_eddist.WEDDist attribute)

 	(westpa.cli.tools.w_fluxanl.WESTTool attribute)

 	(westpa.cli.tools.w_fluxanl.WFluxanlTool attribute)

 	(westpa.cli.tools.w_kinavg.WDirect attribute)

 	(westpa.cli.tools.w_kinetics.WDirect attribute)

 	(westpa.cli.tools.w_multi_west.WESTTool attribute)

 	(westpa.cli.tools.w_multi_west.WMultiWest attribute)

 	(westpa.cli.tools.w_ntop.WESTTool attribute)

 	(westpa.cli.tools.w_ntop.WNTopTool attribute)

 	(westpa.cli.tools.w_pdist.WPDist attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.WReweight attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.WReweight attribute)

 	(westpa.cli.tools.w_red.WRed attribute)

 	(westpa.cli.tools.w_reweight.WReweight attribute)

 	(westpa.cli.tools.w_select.WSelectTool attribute)

 	(westpa.cli.tools.w_stateprobs.WDirect attribute)

 	(westpa.cli.tools.w_trace.WESTTool attribute)

 	(westpa.cli.tools.w_trace.WTraceTool attribute)

 	(westpa.tools.core.WESTTool attribute)

 	(westpa.tools.WESTTool attribute)

 	progress (westpa.core.progress.ProgressIndicator property)

 	(westpa.tools.progress.ProgressIndicator property)

 	ProgressIndicator (class in westpa.core.progress)

 	(class in westpa.tools.progress)

 	ProgressIndicatorComponent (class in westpa.cli.tools.ploterr)

 	(class in westpa.cli.tools.w_assign)

 	(class in westpa.cli.tools.w_crawl)

 	(class in westpa.cli.tools.w_eddist)

 	(class in westpa.cli.tools.w_ipa)

 	(class in westpa.cli.tools.w_multi_west)

 	(class in westpa.cli.tools.w_ntop)

 	(class in westpa.cli.tools.w_pdist)

 	(class in westpa.cli.tools.w_select)

 	(class in westpa.tools)

 	(class in westpa.tools.kinetics_tool)

 	(class in westpa.tools.progress)

 	propagate() (in module westpa.core.wm_ops)

 	(westpa.core.binning.BinlessSimManager method)

 	(westpa.core.binning.mab_manager.MABSimManager method)

 	(westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.binning.MABSimManager method)

 	(westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	(westpa.core.propagators.executable.WESTPropagator method)

 	(westpa.core.propagators.WESTPropagator method)

 	(westpa.core.sim_manager.WESimManager method)

 	PropagationError

 	PROTOCOL_MAJOR (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	PROTOCOL_MINOR (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	PROTOCOL_UPDATE (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

 	PROTOCOL_VERSION (westpa.work_managers.zeromq.core.ZMQCore attribute)

 	(westpa.work_managers.zeromq.node.ZMQCore attribute)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore attribute)

 	(westpa.work_managers.zeromq.worker.ZMQCore attribute)

 	(westpa.work_managers.zeromq.ZMQCore attribute)

Q

 	
 	quantile() (westpa.oldtools.stats.edfs.EDF method)

 	
 	quantiles() (westpa.oldtools.stats.edfs.EDF method)

R

 	
 	random_val_env_vars() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	randomState (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	(westpa.core.h5io.HDF5TrajectoryFile property)

 	randport() (in module westpa.work_managers.zeromq.core)

 	(in module westpa.work_managers.zeromq.work_manager)

 	rate_output_filename (westpa.cli.tools.ploterr.DirectKinetics attribute)

 	(westpa.cli.tools.ploterr.ReweightKinetics attribute)

 	RateAverager (class in westpa.core.kinetics)

 	(class in westpa.core.kinetics.rate_averaging)

 	(class in westpa.westext.weed.weed_driver)

 	(class in westpa.westext.wess.wess_driver)

 	RateCalculator (class in westpa.cli.tools.w_red)

 	read() (westpa.core.h5io.HDF5TrajectoryFile method)

 	(westpa.core.h5io.WESTIterationFile method)

 	(westpa.core.propagators.executable.BytesIO method)

 	read1() (westpa.core.propagators.executable.BytesIO method)

 	read_as_traj() (westpa.core.h5io.HDF5TrajectoryFile method)

 	(westpa.core.h5io.WESTIterationFile method)

 	read_data() (westpa.core.h5io.WESTIterationFile method)

 	read_host_info() (westpa.work_managers.zeromq.work_manager.ZMQWorkManager class method)

 	(westpa.work_managers.zeromq.ZMQWorkManager class method)

 	read_restart() (westpa.core.h5io.WESTIterationFile method)

 	readable() (westpa.core.propagators.executable.BytesIO method)

 	readinto() (westpa.core.propagators.executable.BytesIO method)

 	readline() (westpa.core.propagators.executable.BytesIO method)

 	readlines() (westpa.core.propagators.executable.BytesIO method)

 	rebin_current() (westpa.core.binning.mab_driver.WEDriver method)

 	(westpa.core.we_driver.WEDriver method)

 	recip() (westpa.westext.weed.UncertMath.UncertContainer method)

 	RECONFIGURE_TIMEOUT (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	record_data_binhash() (westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	record_data_iter_range() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	record_data_iter_step() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	record_transition_data() (westpa.oldtools.aframe.TransitionEventAccumulator method)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator method)

 	rectilinear_assign() (in module westpa.core.binning.assign)

 	RectilinearBinMapper (class in westpa.core.binning)

 	(class in westpa.core.binning.assign)

 	(class in westpa.tools.binning)

 	RecursiveBinMapper (class in westpa.core.binning)

 	(class in westpa.core.binning.assign)

 	recv_ack() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	recv_all() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	recv_message() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	recycled (westpa.analysis.core.Walker property)

 	recycled_walkers (westpa.analysis.core.Iteration property)

 	(westpa.analysis.core.Run property)

 	recycling_segments (westpa.core.binning.mab_driver.WEDriver property)

 	(westpa.core.we_driver.WEDriver property)

 	reduce_array() (in module westpa.westext.wess.wess_driver)

 	reference (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	(westpa.core.h5io.HDF5TrajectoryFile property)

 	register_callback() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	relpath() (in module westpa.core.data_manager)

 	remove() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	remove_ipc_endpoints() (westpa.work_managers.zeromq.core.ZMQCore class method)

 	(westpa.work_managers.zeromq.node.ZMQCore class method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore class method)

 	(westpa.work_managers.zeromq.worker.ZMQCore class method)

 	(westpa.work_managers.zeromq.ZMQCore class method)

 	remove_solvent() (westpa.core.h5io.Trajectory method)

 	remove_timer() (westpa.work_managers.zeromq.core.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.node.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.work_manager.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.worker.PassiveMultiTimer method)

 	remove_worker() (westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	replace_dataset() (westpa.cli.tools.w_assign.WESTPAH5File method)

 	(westpa.core.h5io.WESTPAH5File method)

 	report_basis_states() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	
 	report_bin_statistics() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	report_target_states() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	request_task() (westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	require() (westpa.core.yamlcfg.YAMLConfig method)

 	require_analysis_group() (westpa.cli.core.w_succ.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.atool.WESTAnalysisTool method)

 	(westpa.oldtools.aframe.WESTAnalysisTool method)

 	require_bf_h5file() (westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	require_bin_assignments() (westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	require_binning_group() (westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	require_dataset_from_dsopts() (in module westpa.core.data_manager)

 	require_iter_group() (westpa.cli.tools.w_assign.WESTPAH5File method)

 	(westpa.core.data_manager.WESTDataManager method)

 	(westpa.core.h5io.WESTPAH5File method)

 	require_matplotlib() (westpa.oldtools.aframe.plotting.PlottingMixin method)

 	(westpa.oldtools.aframe.PlottingMixin method)

 	require_transitions() (westpa.oldtools.aframe.BFTransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.BFTransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.TransitionAnalysisMixin method)

 	require_transitions_group() (westpa.oldtools.aframe.TransitionAnalysisMixin method)

 	(westpa.oldtools.aframe.transitions.TransitionAnalysisMixin method)

 	require_type_if_present() (westpa.core.yamlcfg.YAMLConfig method)

 	reset() (westpa.work_managers.core.FutureWatcher method)

 	(westpa.work_managers.zeromq.core.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.core.PassiveTimer method)

 	(westpa.work_managers.zeromq.node.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.work_manager.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.worker.PassiveMultiTimer method)

 	resolution (westpa.core.sim_manager.timedelta attribute)

 	resolve_filepath() (in module westpa.core.h5io)

 	restart_loader() (in module westpa.core.propagators.executable)

 	restart_writer() (in module westpa.core.propagators.executable)

 	restrict_atoms() (westpa.core.h5io.Trajectory method)

 	Result (class in westpa.work_managers.zeromq.core)

 	(class in westpa.work_managers.zeromq.work_manager)

 	(class in westpa.work_managers.zeromq.worker)

 	result (westpa.work_managers.core.WMFuture property)

 	(westpa.work_managers.mpi.WMFuture property)

 	(westpa.work_managers.processes.WMFuture property)

 	(westpa.work_managers.serial.WMFuture property)

 	(westpa.work_managers.threads.WMFuture property)

 	RESULT (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	result (westpa.work_managers.zeromq.work_manager.WMFuture property)

 	RESULT (westpa.work_managers.zeromq.worker.Message attribute)

 	results_loop() (westpa.work_managers.processes.ProcessWorkManager method)

 	(westpa.work_managers.ProcessWorkManager method)

 	retrieve_dataset_return() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	return_state_type() (in module westpa.core.propagators.executable)

 	(in module westpa.core.states)

 	reverse() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	reweight (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	reweight() (westpa.core.binning.assign.Bin method)

 	(westpa.core.binning.Bin method)

 	(westpa.core.binning.bins.Bin method)

 	reweight_for_c() (in module westpa.cli.tools.w_reweight)

 	(in module westpa.core.reweight)

 	ReweightKinetics (class in westpa.cli.tools.ploterr)

 	ReweightStateprobs (class in westpa.cli.tools.ploterr)

 	root (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	(westpa.core.h5io.HDF5TrajectoryFile property)

 	rotate() (westpa.work_managers.mpi.deque method)

 	(westpa.work_managers.zeromq.work_manager.deque method)

 	Run (class in westpa.analysis.core)

 	run (westpa.analysis.core.Walker property)

 	run() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	(westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.Task method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.zeromq.node.ZMQNode method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.ZMQNode method)

 	(westpa.work_managers.zeromq.ZMQNode method)

 	run_calculation() (westpa.cli.tools.w_direct.AverageCommands method)

 	(westpa.cli.tools.w_reweight.AverageCommands method)

 	(westpa.tools.kinetics_tool.AverageCommands method)

 	run_simulation() (in module westpa.cli.core.w_run)

 	run_we() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	RunningStatsAccumulator (class in westpa.oldtools.stats)

 	(class in westpa.oldtools.stats.accumulator)

 	runtask() (westpa.work_managers.threads.ThreadsWorkManager method)

 	(westpa.work_managers.ThreadsWorkManager method)

 	RWAll (class in westpa.cli.tools.w_reweight)

 	RWAverage (class in westpa.cli.tools.w_postanalysis_reweight)

 	(class in westpa.cli.tools.w_reweight)

 	RWMatrix (class in westpa.cli.tools.w_postanalysis_matrix)

 	(class in westpa.cli.tools.w_reweight)

 	RWRate (class in westpa.cli.tools.w_reweight)

 	RWReweight (class in westpa.cli.tools.w_reweight)

 	RWStateProbs (class in westpa.cli.tools.w_reweight)

S

 	
 	safe_extract() (in module westpa.core.h5io)

 	(in module westpa.core.propagators.executable)

 	save() (westpa.core.h5io.Trajectory method)

 	save_amberrst7() (westpa.core.h5io.Trajectory method)

 	save_bin_data() (westpa.core.binning.mab_manager.WESimManager method)

 	(westpa.core.sim_manager.WESimManager method)

 	save_bin_mapper() (westpa.core.data_manager.WESTDataManager method)

 	save_binpos() (westpa.core.h5io.Trajectory method)

 	save_dcd() (westpa.core.h5io.Trajectory method)

 	save_dtr() (westpa.core.h5io.Trajectory method)

 	save_gro() (westpa.core.h5io.Trajectory method)

 	save_gsd() (westpa.core.h5io.Trajectory method)

 	save_hdf5() (westpa.core.h5io.Trajectory method)

 	save_iter_binning() (westpa.core.data_manager.WESTDataManager method)

 	save_lammpstrj() (westpa.core.h5io.Trajectory method)

 	save_lh5() (westpa.core.h5io.Trajectory method)

 	save_mdcrd() (westpa.core.h5io.Trajectory method)

 	save_netcdf() (westpa.core.h5io.Trajectory method)

 	save_netcdfrst() (westpa.core.h5io.Trajectory method)

 	save_new_weight_data() (westpa.core.data_manager.WESTDataManager method)

 	save_pdb() (westpa.core.h5io.Trajectory method)

 	save_target_states() (westpa.core.data_manager.WESTDataManager method)

 	save_tng() (westpa.core.h5io.Trajectory method)

 	save_trr() (westpa.core.h5io.Trajectory method)

 	save_xtc() (westpa.core.h5io.Trajectory method)

 	save_xyz() (westpa.core.h5io.Trajectory method)

 	scan_data_range() (westpa.cli.tools.w_eddist.WEDDist method)

 	(westpa.cli.tools.w_pdist.WPDist method)

 	scan_data_shape() (westpa.cli.tools.w_eddist.WEDDist method)

 	(westpa.cli.tools.w_pdist.WPDist method)

 	scheme (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	seconds (westpa.core.sim_manager.timedelta attribute)

 	seek() (westpa.core.h5io.HDF5TrajectoryFile method)

 	(westpa.core.propagators.executable.BytesIO method)

 	seekable() (westpa.core.propagators.executable.BytesIO method)

 	SEG_ENDPOINT_CONTINUES (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	seg_endpoint_dtype (in module westpa.core.data_manager)

 	SEG_ENDPOINT_MERGED (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	SEG_ENDPOINT_RECYCLED (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	SEG_ENDPOINT_UNSET (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	seg_id (westpa.trajtree.trajtree.trajnode attribute)

 	seg_id_dtype (in module westpa.cli.core.w_fork)

 	(in module westpa.cli.tools.w_assign)

 	(in module westpa.cli.tools.w_ntop)

 	(in module westpa.cli.tools.w_select)

 	(in module westpa.cli.tools.w_trace)

 	(in module westpa.core.data_manager)

 	(in module westpa.tools.dtypes)

 	(in module westpa.tools.selected_segs)

 	SEG_INITPOINT_CONTINUES (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	seg_initpoint_dtype (in module westpa.core.data_manager)

 	SEG_INITPOINT_NEWTRAJ (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	SEG_INITPOINT_UNSET (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	seg_label_values() (westpa.core.h5io.WESTTrajectory method)

 	seg_labels (westpa.core.h5io.WESTTrajectory property)

 	SEG_STATUS_COMPLETE (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	seg_status_dtype (in module westpa.core.data_manager)

 	SEG_STATUS_FAILED (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	SEG_STATUS_PREPARED (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	SEG_STATUS_UNSET (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	seglog_loader() (in module westpa.core.propagators.executable)

 	Segment (class in westpa.cli.core.w_fork)

 	(class in westpa.cli.core.w_states)

 	(class in westpa.cli.core.w_succ)

 	(class in westpa.cli.tools.w_dumpsegs)

 	(class in westpa.cli.tools.w_trace)

 	(class in westpa.core.binning.mab_manager)

 	(class in westpa.core.data_manager)

 	(class in westpa.core.propagators.executable)

 	(class in westpa.core.segment)

 	(class in westpa.core.sim_manager)

 	(class in westpa.core.states)

 	(class in westpa.core.we_driver)

 	(class in westpa.oldtools.aframe.data_reader)

 	segment_collector (westpa.analysis.trajectories.Trajectory property)

 	segment_summaries (westpa.analysis.core.Iteration property)

 	segment_summary (westpa.analysis.core.Walker property)

 	SegmentCollector (class in westpa.analysis.trajectories)

 	SegmentSelection (class in westpa.tools.selected_segs)

 	SegSelector (class in westpa.tools)

 	(class in westpa.tools.selected_segs)

 	selected_bin_pair_iter (westpa.oldtools.aframe.kinetics.KineticsAnalysisMixin property)

 	(westpa.oldtools.aframe.KineticsAnalysisMixin property)

 	send_ack() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	send_inproc_message() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	send_message() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	send_nak() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	send_reply() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	sequence_macro_flux_to_rate() (in module westpa.cli.tools.w_direct)

 	(in module westpa.core.kinetics)

 	Serial (class in westpa.work_managers.mpi)

 	SerialWorkManager (class in westpa.work_managers)

 	(class in westpa.work_managers.serial)

 	set() (westpa.cli.tools.plothist.NonUniformImage method)

 	set_arg_default() (westpa.tools.binning.WESTToolComponent method)

 	(westpa.tools.core.WESTToolComponent method)

 	(westpa.tools.data_reader.WESTToolComponent method)

 	(westpa.tools.iter_range.WESTToolComponent method)

 	(westpa.tools.progress.WESTToolComponent method)

 	(westpa.tools.selected_segs.WESTToolComponent method)

 	(westpa.tools.WESTToolComponent method)

 	set_array() (westpa.cli.tools.plothist.NonUniformImage method)

 	set_cmap() (westpa.cli.tools.plothist.NonUniformImage method)

 	set_data() (westpa.cli.tools.plothist.NonUniformImage method)

 	set_filternorm() (westpa.cli.tools.plothist.NonUniformImage method)

 	set_filterrad() (westpa.cli.tools.plothist.NonUniformImage method)

 	set_interpolation() (westpa.cli.tools.plothist.NonUniformImage method)

 	set_norm() (westpa.cli.tools.plothist.NonUniformImage method)

 	set_other_h5file_info() (westpa.cli.tools.w_assign.BinMappingComponent method)

 	(westpa.cli.tools.w_bins.BinMappingComponent method)

 	(westpa.tools.BinMappingComponent method)

 	(westpa.tools.binning.BinMappingComponent method)

 	set_state() (westpa.oldtools.aframe.TransitionEventAccumulator method)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator method)

 	set_we_h5file_info() (westpa.cli.tools.w_assign.BinMappingComponent method)

 	(westpa.cli.tools.w_bins.BinMappingComponent method)

 	(westpa.tools.BinMappingComponent method)

 	(westpa.tools.binning.BinMappingComponent method)

 	setup_dataset_return() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	SHUTDOWN (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	shutdown() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.Manager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.ProcessWorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.ProcessWorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.ThreadsWorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.ThreadsWorkManager method)

 	(westpa.work_managers.zeromq.core.IsNode method)

 	(westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.IsNode method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.IsNode method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	
 	shutdown_clear_tasks() (westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	shutdown_executor() (westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	shutdown_handler() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	shutdown_process() (in module westpa.work_managers.zeromq.core)

 	sigint_handler() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	signal() (westpa.work_managers.core.FutureWatcher method)

 	signal_shutdown() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	SingleDSSpec (class in westpa.core.h5io)

 	SingleIterDSSpec (class in westpa.core.h5io)

 	(class in westpa.tools.data_reader)

 	SingleSegmentDSSpec (class in westpa.core.h5io)

 	(class in westpa.tools.data_reader)

 	sink (westpa.analysis.core.Iteration property)

 	slice() (westpa.core.h5io.Trajectory method)

 	(westpa.core.h5io.WESTTrajectory method)

 	slice_per_iter_data() (westpa.cli.tools.w_crawl.IterRangeSelection method)

 	(westpa.cli.tools.w_fluxanl.IterRangeSelection method)

 	(westpa.cli.tools.w_ntop.IterRangeSelection method)

 	(westpa.cli.tools.w_pdist.IterRangeSelection method)

 	(westpa.cli.tools.w_select.IterRangeSelection method)

 	(westpa.oldtools.aframe.iter_range.IterRangeMixin method)

 	(westpa.oldtools.aframe.IterRangeMixin method)

 	(westpa.tools.iter_range.IterRangeSelection method)

 	(westpa.tools.IterRangeSelection method)

 	(westpa.tools.kinetics_tool.IterRangeSelection method)

 	smallest_allowed_weight (westpa.core.binning.mab_driver.WEDriver attribute)

 	(westpa.core.we_driver.WEDriver attribute)

 	smooth() (westpa.core.h5io.Trajectory method)

 	solve_steady_state() (in module westpa.westext.wess.ProbAdjust)

 	stack() (westpa.core.h5io.Trajectory method)

 	stamp_creator_data() (in module westpa.core.h5io)

 	stamp_hash() (westpa.cli.tools.w_ipa.WIPI method)

 	stamp_iter_range() (in module westpa.core.h5io)

 	stamp_iter_step() (in module westpa.core.h5io)

 	stamp_mcbs_info() (westpa.cli.tools.w_direct.AverageCommands method)

 	(westpa.cli.tools.w_reweight.AverageCommands method)

 	(westpa.tools.kinetics_tool.AverageCommands method)

 	start() (westpa.core.progress.ProgressIndicator method)

 	(westpa.tools.progress.ProgressIndicator method)

 	(westpa.work_managers.zeromq.core.PassiveTimer method)

 	start_accumulation() (westpa.oldtools.aframe.TransitionEventAccumulator method)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator method)

 	start_index (westpa.core.binning.assign.RecursiveBinMapper property)

 	(westpa.core.binning.RecursiveBinMapper property)

 	start_iter (westpa.tools.selected_segs.SegmentSelection property)

 	started (westpa.work_managers.zeromq.core.PassiveTimer attribute)

 	startup() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.Manager method)

 	(westpa.work_managers.mpi.Worker method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.ProcessWorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.ProcessWorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.ThreadsWorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.ThreadsWorkManager method)

 	(westpa.work_managers.zeromq.core.IsNode method)

 	(westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.IsNode method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQNode method)

 	(westpa.work_managers.zeromq.work_manager.IsNode method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQNode method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQExecutor method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQNode method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	state_labels (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	states_from_dict() (westpa.cli.tools.w_assign.WAssign method)

 	states_from_file() (westpa.cli.core.w_init.BasisState class method)

 	(westpa.cli.core.w_init.TargetState class method)

 	(westpa.cli.core.w_states.BasisState class method)

 	(westpa.cli.core.w_states.TargetState class method)

 	(westpa.core.data_manager.BasisState class method)

 	(westpa.core.data_manager.TargetState class method)

 	(westpa.core.propagators.executable.BasisState class method)

 	(westpa.core.states.BasisState class method)

 	(westpa.core.states.TargetState class method)

 	states_to_file() (westpa.cli.core.w_init.BasisState class method)

 	(westpa.cli.core.w_init.TargetState class method)

 	(westpa.cli.core.w_states.BasisState class method)

 	(westpa.cli.core.w_states.TargetState class method)

 	(westpa.core.data_manager.BasisState class method)

 	(westpa.core.data_manager.TargetState class method)

 	(westpa.core.propagators.executable.BasisState class method)

 	(westpa.core.states.BasisState class method)

 	(westpa.core.states.TargetState class method)

 	stats_process() (in module westpa.core.reweight)

 	(in module westpa.core.reweight.matrix)

 	status_names (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	status_text (westpa.cli.core.w_fork.Segment property)

 	(westpa.cli.core.w_states.Segment property)

 	(westpa.cli.core.w_succ.Segment property)

 	(westpa.cli.tools.w_dumpsegs.Segment property)

 	(westpa.cli.tools.w_trace.Segment property)

 	(westpa.core.binning.mab_manager.Segment property)

 	(westpa.core.data_manager.Segment property)

 	(westpa.core.propagators.executable.Segment property)

 	(westpa.core.segment.Segment property)

 	(westpa.core.sim_manager.Segment property)

 	(westpa.core.states.Segment property)

 	(westpa.core.we_driver.Segment property)

 	(westpa.oldtools.aframe.data_reader.Segment property)

 	statuses (westpa.cli.core.w_fork.Segment attribute)

 	(westpa.cli.core.w_states.Segment attribute)

 	(westpa.cli.core.w_succ.Segment attribute)

 	(westpa.cli.tools.w_dumpsegs.Segment attribute)

 	(westpa.cli.tools.w_trace.Segment attribute)

 	(westpa.core.binning.mab_manager.Segment attribute)

 	(westpa.core.data_manager.Segment attribute)

 	(westpa.core.propagators.executable.Segment attribute)

 	(westpa.core.segment.Segment attribute)

 	(westpa.core.sim_manager.Segment attribute)

 	(westpa.core.states.Segment attribute)

 	(westpa.core.we_driver.Segment attribute)

 	(westpa.oldtools.aframe.data_reader.Segment attribute)

 	std() (westpa.oldtools.stats.accumulator.RunningStatsAccumulator method)

 	(westpa.oldtools.stats.edfs.EDF method)

 	(westpa.oldtools.stats.RunningStatsAccumulator method)

 	stop() (westpa.core.progress.ProgressIndicator method)

 	(westpa.tools.progress.ProgressIndicator method)

 	stop_iter (westpa.tools.selected_segs.SegmentSelection property)

 	StreamingStats1D (class in westpa.core.kinetics.rate_averaging)

 	StreamingStats2D (class in westpa.core.kinetics.rate_averaging)

 	StreamingStatsTuple (class in westpa.core.kinetics.rate_averaging)

 	subcommand (westpa.cli.tools.ploterr.DirectKinetics attribute)

 	(westpa.cli.tools.ploterr.DirectStateprobs attribute)

 	(westpa.cli.tools.ploterr.GenericIntervalSubcommand attribute)

 	(westpa.cli.tools.ploterr.ReweightKinetics attribute)

 	(westpa.cli.tools.ploterr.ReweightStateprobs attribute)

 	(westpa.cli.tools.ploterr.WESTSubcommand attribute)

 	(westpa.cli.tools.plothist.AveragePlotHist attribute)

 	(westpa.cli.tools.plothist.EvolutionPlotHist attribute)

 	(westpa.cli.tools.plothist.InstantPlotHist attribute)

 	(westpa.cli.tools.plothist.WESTSubcommand attribute)

 	(westpa.cli.tools.w_direct.DAll attribute)

 	(westpa.cli.tools.w_direct.DAverage attribute)

 	(westpa.cli.tools.w_direct.DKinAvg attribute)

 	(westpa.cli.tools.w_direct.DKinetics attribute)

 	(westpa.cli.tools.w_direct.DStateProbs attribute)

 	(westpa.cli.tools.w_kinavg.DKinAvg attribute)

 	(westpa.cli.tools.w_kinavg.WKinAvg attribute)

 	(westpa.cli.tools.w_kinetics.DKinetics attribute)

 	(westpa.cli.tools.w_kinetics.WKinetics attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.PAMatrix attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.RWMatrix attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.PAAverage attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.RWAll attribute)

 	(westpa.cli.tools.w_reweight.RWAverage attribute)

 	(westpa.cli.tools.w_reweight.RWMatrix attribute)

 	(westpa.cli.tools.w_reweight.RWRate attribute)

 	(westpa.cli.tools.w_reweight.RWStateProbs attribute)

 	(westpa.cli.tools.w_stateprobs.DStateProbs attribute)

 	(westpa.cli.tools.w_stateprobs.WStateProbs attribute)

 	(westpa.tools.core.WESTSubcommand attribute)

 	(westpa.tools.kinetics_tool.WESTSubcommand attribute)

 	(westpa.tools.WESTSubcommand attribute)

 	subcommands (westpa.cli.tools.ploterr.PloterrsTool attribute)

 	(westpa.cli.tools.ploterr.WESTMasterCommand attribute)

 	(westpa.cli.tools.plothist.PlotHistTool attribute)

 	(westpa.cli.tools.plothist.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_direct.WDirect attribute)

 	(westpa.cli.tools.w_direct.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_kinavg.WDirect attribute)

 	(westpa.cli.tools.w_kinavg.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_kinetics.WDirect attribute)

 	(westpa.cli.tools.w_kinetics.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.WReweight attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.WReweight attribute)

 	(westpa.cli.tools.w_reweight.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_reweight.WReweight attribute)

 	(westpa.cli.tools.w_stateprobs.WDirect attribute)

 	(westpa.cli.tools.w_stateprobs.WESTMasterCommand attribute)

 	(westpa.tools.core.WESTMasterCommand attribute)

 	(westpa.tools.WESTMasterCommand attribute)

 	submit() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.Manager method)

 	(westpa.work_managers.mpi.MPIWorkManager method)

 	(westpa.work_managers.mpi.Serial method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.ProcessWorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.ProcessWorkManager method)

 	(westpa.work_managers.serial.SerialWorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.SerialWorkManager method)

 	(westpa.work_managers.threads.ThreadsWorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.ThreadsWorkManager method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	submit_as_completed() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	submit_many() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	subparsers_title (westpa.cli.tools.ploterr.PloterrsTool attribute)

 	(westpa.cli.tools.ploterr.WESTMasterCommand attribute)

 	(westpa.cli.tools.plothist.PlotHistTool attribute)

 	(westpa.cli.tools.plothist.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_direct.WDirect attribute)

 	(westpa.cli.tools.w_direct.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_kinavg.WDirect attribute)

 	(westpa.cli.tools.w_kinavg.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_kinetics.WDirect attribute)

 	(westpa.cli.tools.w_kinetics.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_postanalysis_matrix.WReweight attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_postanalysis_reweight.WReweight attribute)

 	(westpa.cli.tools.w_reweight.WESTMasterCommand attribute)

 	(westpa.cli.tools.w_reweight.WReweight attribute)

 	(westpa.cli.tools.w_stateprobs.WDirect attribute)

 	(westpa.cli.tools.w_stateprobs.WESTMasterCommand attribute)

 	(westpa.tools.core.WESTMasterCommand attribute)

 	(westpa.tools.WESTMasterCommand attribute)

 	sum_except_along() (in module westpa.cli.tools.plothist)

 	summary (westpa.analysis.core.Iteration property)

 	(westpa.analysis.core.Run property)

 	superpose() (westpa.core.h5io.Trajectory method)

 	system (westpa.core.data_manager.WESTDataManager property)

T

 	
 	table_scan_chunksize (westpa.core.data_manager.WESTDataManager attribute)

 	target_state() (westpa.analysis.core.Iteration method)

 	target_state_pcoords (westpa.analysis.core.Iteration property)

 	target_state_summaries (westpa.analysis.core.Iteration property)

 	target_states (westpa.analysis.core.Iteration property)

 	TargetState (class in westpa.cli.core.w_init)

 	(class in westpa.cli.core.w_states)

 	(class in westpa.core.data_manager)

 	(class in westpa.core.states)

 	Task (class in westpa.work_managers.mpi)

 	(class in westpa.work_managers.threads)

 	(class in westpa.work_managers.zeromq.core)

 	(class in westpa.work_managers.zeromq.work_manager)

 	(class in westpa.work_managers.zeromq.worker)

 	TASK (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	task_generator() (westpa.core.kinetics.rate_averaging.RateAverager method)

 	(westpa.core.kinetics.RateAverager method)

 	(westpa.westext.weed.weed_driver.RateAverager method)

 	(westpa.westext.wess.wess_driver.RateAverager method)

 	task_loop() (westpa.work_managers.processes.ProcessWorkManager method)

 	(westpa.work_managers.ProcessWorkManager method)

 	TASK_REQUEST (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	TASKS_AVAILABLE (westpa.work_managers.zeromq.core.Message attribute)

 	(westpa.work_managers.zeromq.node.Message attribute)

 	(westpa.work_managers.zeromq.work_manager.Message attribute)

 	(westpa.work_managers.zeromq.worker.Message attribute)

 	tau (westpa.cli.tools.w_red.RateCalculator property)

 	tdat_buffersize (westpa.oldtools.aframe.TransitionEventAccumulator attribute)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator attribute)

 	tell() (westpa.core.h5io.HDF5TrajectoryFile method)

 	(westpa.core.propagators.executable.BytesIO method)

 	temperature (westpa.core.h5io.Frames attribute)

 	template_args_for_segment() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	text_to_h5dataset() (westpa.oldtools.aframe.data_reader.ExtDataReaderMixin method)

 	(westpa.oldtools.aframe.ExtDataReaderMixin method)

 	ThreadProxy (class in westpa.work_managers.zeromq.node)

 	ThreadsWorkManager (class in westpa.work_managers)

 	(class in westpa.work_managers.threads)

 	time (westpa.core.h5io.Frames attribute)

 	(westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	time_average() (in module westpa.analysis.statistics)

 	timedelta (class in westpa.core.sim_manager)

 	timestep (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	
 	title (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	(westpa.core.h5io.HDF5TrajectoryFile property)

 	top (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	topology (westpa.core.h5io.HDF5TrajectoryFile attribute)

 	(westpa.core.h5io.HDF5TrajectoryFile property)

 	(westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	tostr() (in module westpa.core.h5io)

 	total_number_of_walkers() (westpa.cli.tools.w_multi_west.WMultiWest method)

 	total_seconds() (westpa.core.sim_manager.timedelta method)

 	total_segs_in_range() (westpa.cli.core.w_succ.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.data_reader.WESTDataReaderMixin method)

 	(westpa.oldtools.aframe.WESTDataReaderMixin method)

 	Trace (class in westpa.analysis.core)

 	(class in westpa.cli.tools.w_trace)

 	trace() (westpa.analysis.core.Walker method)

 	(westpa.cli.tools.w_ipa.WIPI method)

 	trace_timepoint_dataset() (westpa.cli.tools.w_trace.Trace method)

 	trace_to_root() (westpa.oldtools.aframe.TrajWalker method)

 	(westpa.oldtools.aframe.trajwalker.TrajWalker method)

 	(westpa.oldtools.aframe.transitions.TrajWalker method)

 	trace_trajectories() (westpa.oldtools.aframe.TrajWalker method)

 	(westpa.oldtools.aframe.trajwalker.TrajWalker method)

 	(westpa.oldtools.aframe.transitions.TrajWalker method)

 	(westpa.trajtree.trajtree.TrajTreeSet method)

 	(westpa.trajtree.TrajTreeSet method)

 	traceback (westpa.work_managers.core.WMFuture property)

 	(westpa.work_managers.mpi.WMFuture property)

 	(westpa.work_managers.processes.WMFuture property)

 	(westpa.work_managers.serial.WMFuture property)

 	(westpa.work_managers.threads.WMFuture property)

 	(westpa.work_managers.zeromq.work_manager.WMFuture property)

 	traj_index_dtype (westpa.oldtools.aframe.BFDataManager attribute)

 	(westpa.oldtools.aframe.data_reader.BFDataManager attribute)

 	Trajectory (class in westpa.analysis.trajectories)

 	(class in westpa.core.h5io)

 	trajectory_loader() (in module westpa.core.propagators.executable)

 	trajnode (class in westpa.trajtree.trajtree)

 	TrajTreeSet (class in westpa.trajtree)

 	(class in westpa.trajtree.trajtree)

 	TrajWalker (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.trajwalker)

 	(class in westpa.oldtools.aframe.transitions)

 	TransitionAnalysisMixin (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.transitions)

 	TransitionEventAccumulator (class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.transitions)

 	transpose() (westpa.westext.weed.UncertMath.UncertContainer method)

 	truncate() (westpa.core.propagators.executable.BytesIO method)

 	tuple2stats() (in module westpa.core.kinetics.rate_averaging)

U

 	
 	UncertContainer (class in westpa.westext.weed.UncertMath)

 	union() (westpa.analysis.core.BinUnion method)

 	unitcell_angles (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	unitcell_lengths (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	unitcell_vectors (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

 	unitcell_volumes (westpa.core.h5io.Trajectory property)

 	update() (westpa.core.kinetics.rate_averaging.StreamingStats1D method)

 	(westpa.core.kinetics.rate_averaging.StreamingStats2D method)

 	update_args_env_basis_state() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	update_args_env_initial_state() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	update_args_env_iter() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	update_args_env_segment() (westpa.core.data_manager.ExecutablePropagator method)

 	(westpa.core.propagators.executable.ExecutablePropagator method)

 	update_basis_initial_states() (westpa.core.propagators.executable.WESTPropagator method)

 	(westpa.core.propagators.WESTPropagator method)

 	update_bin_mapper() (westpa.westext.adaptvoronoi.AdaptiveVoronoiDriver method)

 	(westpa.westext.adaptvoronoi.adaptVor_driver.AdaptiveVoronoiDriver method)

 	update_centers() (westpa.westext.adaptvoronoi.AdaptiveVoronoiDriver method)

 	(westpa.westext.adaptvoronoi.adaptVor_driver.AdaptiveVoronoiDriver method)

 	
 	update_from_file() (westpa.core.yamlcfg.YAMLConfig method)

 	update_initial_states() (westpa.core.data_manager.WESTDataManager method)

 	update_iter_group_links() (westpa.core.data_manager.WESTDataManager method)

 	update_iter_h5file() (westpa.core.data_manager.WESTDataManager method)

 	update_iter_summary() (westpa.core.data_manager.WESTDataManager method)

 	update_mask() (westpa.westext.weed.UncertMath.UncertContainer method)

 	update_master_info() (westpa.work_managers.zeromq.work_manager.ZMQWorker method)

 	(westpa.work_managers.zeromq.worker.ZMQWorker method)

 	(westpa.work_managers.zeromq.ZMQWorker method)

 	update_segments() (westpa.core.data_manager.WESTDataManager method)

 	update_traj_index() (westpa.oldtools.aframe.BFDataManager method)

 	(westpa.oldtools.aframe.data_reader.BFDataManager method)

 	update_worker_information() (westpa.work_managers.zeromq.work_manager.ZMQWorkManager method)

 	(westpa.work_managers.zeromq.ZMQWorkManager method)

 	usage (westpa.cli.tools.w_bins.WESTTool attribute)

 	(westpa.cli.tools.w_dumpsegs.WESTTool attribute)

 	(westpa.cli.tools.w_fluxanl.WESTTool attribute)

 	(westpa.cli.tools.w_multi_west.WESTTool attribute)

 	(westpa.cli.tools.w_ntop.WESTTool attribute)

 	(westpa.cli.tools.w_trace.WESTTool attribute)

 	(westpa.tools.core.WESTTool attribute)

 	(westpa.tools.WESTTool attribute)

 	utime_dtype (in module westpa.cli.tools.w_trace)

 	(in module westpa.core.data_manager)

V

 	
 	valid_work_managers (westpa.work_managers.environment.WMEnvironment attribute)

 	validate_message() (westpa.work_managers.zeromq.core.ZMQCore method)

 	(westpa.work_managers.zeromq.node.ZMQCore method)

 	(westpa.work_managers.zeromq.work_manager.ZMQCore method)

 	(westpa.work_managers.zeromq.worker.ZMQCore method)

 	(westpa.work_managers.zeromq.ZMQCore method)

 	var (westpa.core.kinetics.rate_averaging.StreamingStats1D attribute)

 	(westpa.core.kinetics.rate_averaging.StreamingStats2D attribute)

 	
 	var() (westpa.oldtools.stats.edfs.EDF method)

 	VectorizingFuncBinMapper (class in westpa.core.binning)

 	(class in westpa.core.binning.assign)

 	velocities (westpa.core.h5io.Frames attribute)

 	VoronoiBinMapper (class in westpa.core.binning)

 	(class in westpa.core.binning.assign)

 	(class in westpa.westext.adaptvoronoi.adaptVor_driver)

W

 	
 	w_kinavg() (westpa.cli.tools.w_direct.DKinAvg method)

 	(westpa.cli.tools.w_kinavg.DKinAvg method)

 	w_kinetics() (westpa.cli.tools.w_direct.WKinetics method)

 	(westpa.core.kinetics.events.WKinetics method)

 	(westpa.core.kinetics.WKinetics method)

 	w_postanalysis_matrix() (westpa.cli.tools.w_reweight.FluxMatrix method)

 	(westpa.core.reweight.FluxMatrix method)

 	(westpa.core.reweight.matrix.FluxMatrix method)

 	w_postanalysis_reweight() (westpa.cli.tools.w_reweight.RWRate method)

 	w_postanalysis_stateprobs() (westpa.cli.tools.w_reweight.RWStateProbs method)

 	w_stateprobs() (westpa.cli.tools.w_direct.DStateProbs method)

 	(westpa.cli.tools.w_stateprobs.DStateProbs method)

 	wait() (westpa.work_managers.core.FutureWatcher method)

 	(westpa.work_managers.core.WMFuture method)

 	(westpa.work_managers.mpi.WMFuture method)

 	(westpa.work_managers.processes.WMFuture method)

 	(westpa.work_managers.serial.WMFuture method)

 	(westpa.work_managers.threads.WMFuture method)

 	(westpa.work_managers.zeromq.work_manager.WMFuture method)

 	wait_all() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	wait_any() (westpa.work_managers.core.WorkManager method)

 	(westpa.work_managers.mpi.WorkManager method)

 	(westpa.work_managers.processes.WorkManager method)

 	(westpa.work_managers.serial.WorkManager method)

 	(westpa.work_managers.threads.WorkManager method)

 	(westpa.work_managers.zeromq.work_manager.WorkManager method)

 	Walker (class in westpa.analysis.core)

 	walker() (westpa.analysis.core.Iteration method)

 	walkers (westpa.analysis.core.Iteration property)

 	(westpa.analysis.core.Run property)

 	warn() (in module westpa.cli.tools.w_dumpsegs)

 	(in module westpa.cli.tools.w_fluxanl)

 	(in module westpa.cli.tools.w_kinavg)

 	(in module westpa.cli.tools.w_kinetics)

 	(in module westpa.cli.tools.w_postanalysis_matrix)

 	(in module westpa.cli.tools.w_postanalysis_reweight)

 	(in module westpa.cli.tools.w_stateprobs)

 	warn_dubious_config_entry() (in module westpa.core.yamlcfg)

 	WAssign (class in westpa.cli.tools.w_assign)

 	WBinTool (class in westpa.cli.tools.w_bins)

 	WCrawl (class in westpa.cli.tools.w_crawl)

 	WDirect (class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_kinavg)

 	(class in westpa.cli.tools.w_kinetics)

 	(class in westpa.cli.tools.w_stateprobs)

 	WDumpSegs (class in westpa.cli.tools.w_dumpsegs)

 	WEDDist (class in westpa.cli.tools.w_eddist)

 	WEDriver (class in westpa.core.binning.mab_driver)

 	(class in westpa.core.we_driver)

 	WEEDDriver (class in westpa.westext.weed)

 	(class in westpa.westext.weed.weed_driver)

 	weight (westpa.analysis.core.Walker property)

 	(westpa.core.binning.assign.Bin property)

 	(westpa.core.binning.Bin property)

 	(westpa.core.binning.bins.Bin property)

 	weight_dsspec (westpa.cli.tools.w_assign.WESTDataReader property)

 	(westpa.cli.tools.w_bins.WESTDataReader property)

 	(westpa.cli.tools.w_crawl.WESTDataReader property)

 	(westpa.cli.tools.w_dumpsegs.WESTDataReader property)

 	(westpa.cli.tools.w_fluxanl.WESTDataReader property)

 	(westpa.cli.tools.w_ipa.WESTDataReader property)

 	(westpa.cli.tools.w_ntop.WESTDataReader property)

 	(westpa.cli.tools.w_pdist.WESTDataReader property)

 	(westpa.cli.tools.w_select.WESTDataReader property)

 	(westpa.cli.tools.w_trace.WESTDataReader property)

 	(westpa.tools.data_reader.WESTDataReader property)

 	(westpa.tools.kinetics_tool.WESTDataReader property)

 	(westpa.tools.WESTDataReader property)

 	weight_dtype (in module westpa.cli.tools.w_assign)

 	(in module westpa.cli.tools.w_direct)

 	(in module westpa.cli.tools.w_fluxanl)

 	(in module westpa.cli.tools.w_ntop)

 	(in module westpa.cli.tools.w_select)

 	(in module westpa.cli.tools.w_trace)

 	(in module westpa.core.data_manager)

 	(in module westpa.core.kinetics.events)

 	(in module westpa.core.kinetics.matrates)

 	(in module westpa.core.reweight.matrix)

 	(in module westpa.core.sim_manager)

 	(in module westpa.tools.binning)

 	(in module westpa.tools.dtypes)

 	(westpa.oldtools.aframe.TransitionEventAccumulator attribute)

 	(westpa.oldtools.aframe.transitions.TransitionEventAccumulator attribute)

 	weight_merge_cutoff (westpa.core.binning.mab_driver.WEDriver attribute)

 	(westpa.core.we_driver.WEDriver attribute)

 	weight_split_threshold (westpa.core.binning.mab_driver.WEDriver attribute)

 	(westpa.core.we_driver.WEDriver attribute)

 	weighted_average() (westpa.westext.weed.UncertMath.UncertContainer method)

 	weights (westpa.analysis.core.Iteration property)

 	WESimManager (class in westpa.core.binning.mab_manager)

 	(class in westpa.core.sim_manager)

 	WESSDriver (class in westpa.westext.wess)

 	(class in westpa.westext.wess.wess_driver)

 	west (westpa.cli.tools.w_ipa.WIPI property)

 	(westpa.cli.tools.w_ipa.WIPIScheme property)

 	(westpa.tools.wipi.WIPIScheme property)

 	(westpa.tools.WIPIScheme property)

 	WESTAnalysisTool (class in westpa.cli.core.w_succ)

 	(class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.atool)

 	WESTDataManager (class in westpa.core.data_manager)

 	WESTDataReader (class in westpa.cli.tools.w_assign)

 	(class in westpa.cli.tools.w_bins)

 	(class in westpa.cli.tools.w_crawl)

 	(class in westpa.cli.tools.w_dumpsegs)

 	(class in westpa.cli.tools.w_fluxanl)

 	(class in westpa.cli.tools.w_ipa)

 	(class in westpa.cli.tools.w_ntop)

 	(class in westpa.cli.tools.w_pdist)

 	(class in westpa.cli.tools.w_select)

 	(class in westpa.cli.tools.w_trace)

 	(class in westpa.tools)

 	(class in westpa.tools.data_reader)

 	(class in westpa.tools.kinetics_tool)

 	WESTDataReaderMixin (class in westpa.cli.core.w_succ)

 	(class in westpa.oldtools.aframe)

 	(class in westpa.oldtools.aframe.data_reader)

 	WESTDSSynthesizer (class in westpa.cli.tools.w_assign)

 	(class in westpa.cli.tools.w_pdist)

 	(class in westpa.tools)

 	(class in westpa.tools.data_reader)

 	WESTIterationFile (class in westpa.core.h5io)

 	WESTKineticsBase (class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_reweight)

 	(class in westpa.tools.kinetics_tool)

 	WESTMasterCommand (class in westpa.cli.tools.ploterr)

 	(class in westpa.cli.tools.plothist)

 	(class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_kinavg)

 	(class in westpa.cli.tools.w_kinetics)

 	(class in westpa.cli.tools.w_postanalysis_matrix)

 	(class in westpa.cli.tools.w_postanalysis_reweight)

 	(class in westpa.cli.tools.w_reweight)

 	(class in westpa.cli.tools.w_stateprobs)

 	(class in westpa.tools)

 	(class in westpa.tools.core)

 	WESTMultiTool (class in westpa.cli.tools.w_multi_west)

 	(class in westpa.tools)

 	(class in westpa.tools.core)

 	WESTMultiTool.NoSimulationsException, [1], [2]

 	
 westpa.analysis.core

 	module

 	
 westpa.analysis.statistics

 	module

 	
 westpa.analysis.trajectories

 	module

 	
 westpa.cli.core.w_fork

 	module

 	
 westpa.cli.core.w_init

 	module

 	
 westpa.cli.core.w_run

 	module

 	
 westpa.cli.core.w_states

 	module

 	
 westpa.cli.core.w_succ

 	module

 	
 westpa.cli.core.w_truncate

 	module

 	
 westpa.cli.tools.ploterr

 	module

 	
 westpa.cli.tools.plothist

 	module

 	
 westpa.cli.tools.w_assign

 	module

 	
 westpa.cli.tools.w_bins

 	module

 	
 westpa.cli.tools.w_crawl

 	module

 	
 westpa.cli.tools.w_direct

 	module

 	
 westpa.cli.tools.w_dumpsegs

 	module

 	
 westpa.cli.tools.w_eddist

 	module

 	
 westpa.cli.tools.w_fluxanl

 	module

 	
 westpa.cli.tools.w_ipa

 	module

 	
 westpa.cli.tools.w_kinavg

 	module

 	
 westpa.cli.tools.w_kinetics

 	module

 	
 westpa.cli.tools.w_multi_west

 	module

 	
 westpa.cli.tools.w_ntop

 	module

 	
 westpa.cli.tools.w_pdist

 	module

 	
 westpa.cli.tools.w_postanalysis_matrix

 	module

 	
 westpa.cli.tools.w_postanalysis_reweight

 	module

 	
 westpa.cli.tools.w_red

 	module

 	
 westpa.cli.tools.w_reweight

 	module

 	
 westpa.cli.tools.w_select

 	module

 	
 westpa.cli.tools.w_stateprobs

 	module

 	
 westpa.cli.tools.w_trace

 	module

 	
 westpa.core

 	module

 	
 westpa.core.binning

 	module

 	
 westpa.core.binning.assign

 	module, [1]

 	
 westpa.core.binning.bins

 	module, [1]

 	
 westpa.core.binning.mab

 	module

 	
 westpa.core.binning.mab_driver

 	module

 	
 westpa.core.binning.mab_manager

 	module

 	
 westpa.core.data_manager

 	module

 	
 westpa.core.extloader

 	module

 	
 westpa.core.h5io

 	module

 	
 westpa.core.kinetics

 	module

 	
 westpa.core.kinetics.events

 	module

 	
 westpa.core.kinetics.matrates

 	module

 	
 westpa.core.kinetics.rate_averaging

 	module

 	
 westpa.core.progress

 	module

 	
 westpa.core.propagators

 	module

 	
 westpa.core.propagators.executable

 	module

 	
 westpa.core.reweight

 	module

 	
 westpa.core.reweight.matrix

 	module

 	
 	
 westpa.core.segment

 	module

 	
 westpa.core.sim_manager

 	module

 	
 westpa.core.states

 	module

 	
 westpa.core.systems

 	module

 	
 westpa.core.textio

 	module

 	
 westpa.core.we_driver

 	module

 	
 westpa.core.wm_ops

 	module

 	
 westpa.core.yamlcfg

 	module, [1]

 	
 westpa.fasthist

 	module

 	
 westpa.mclib

 	module

 	
 westpa.oldtools

 	module

 	
 westpa.oldtools.aframe

 	module

 	
 westpa.oldtools.aframe.atool

 	module

 	
 westpa.oldtools.aframe.base_mixin

 	module

 	
 westpa.oldtools.aframe.binning

 	module

 	
 westpa.oldtools.aframe.data_reader

 	module

 	
 westpa.oldtools.aframe.iter_range

 	module

 	
 westpa.oldtools.aframe.kinetics

 	module

 	
 westpa.oldtools.aframe.mcbs

 	module

 	
 westpa.oldtools.aframe.output

 	module

 	
 westpa.oldtools.aframe.plotting

 	module

 	
 westpa.oldtools.aframe.trajwalker

 	module

 	
 westpa.oldtools.aframe.transitions

 	module

 	
 westpa.oldtools.cmds

 	module

 	
 westpa.oldtools.files

 	module

 	
 westpa.oldtools.miscfn

 	module

 	
 westpa.oldtools.stats

 	module

 	
 westpa.oldtools.stats.accumulator

 	module

 	
 westpa.oldtools.stats.edfs

 	module

 	
 westpa.oldtools.stats.mcbs

 	module

 	
 westpa.tools

 	module

 	
 westpa.tools.binning

 	module

 	
 westpa.tools.core

 	module

 	
 westpa.tools.data_reader

 	module

 	
 westpa.tools.dtypes

 	module

 	
 westpa.tools.iter_range

 	module

 	
 westpa.tools.kinetics_tool

 	module

 	
 westpa.tools.plot

 	module

 	
 westpa.tools.progress

 	module

 	
 westpa.tools.selected_segs

 	module

 	
 westpa.tools.wipi

 	module

 	
 westpa.trajtree

 	module

 	
 westpa.trajtree.trajtree

 	module

 	
 westpa.westext

 	module

 	
 westpa.westext.adaptvoronoi

 	module

 	
 westpa.westext.adaptvoronoi.adaptVor_driver

 	module

 	
 westpa.westext.weed

 	module

 	
 westpa.westext.weed.BinCluster

 	module

 	
 westpa.westext.weed.ProbAdjustEquil

 	module

 	
 westpa.westext.weed.UncertMath

 	module

 	
 westpa.westext.weed.weed_driver

 	module

 	
 westpa.westext.wess

 	module

 	
 westpa.westext.wess.ProbAdjust

 	module

 	
 westpa.westext.wess.wess_driver

 	module

 	
 westpa.work_managers

 	module

 	
 westpa.work_managers.core

 	module

 	
 westpa.work_managers.environment

 	module

 	
 westpa.work_managers.mpi

 	module

 	
 westpa.work_managers.processes

 	module

 	
 westpa.work_managers.serial

 	module

 	
 westpa.work_managers.threads

 	module

 	
 westpa.work_managers.zeromq

 	module

 	
 westpa.work_managers.zeromq.core

 	module

 	
 westpa.work_managers.zeromq.node

 	module

 	
 westpa.work_managers.zeromq.work_manager

 	module

 	
 westpa.work_managers.zeromq.worker

 	module

 	WESTPACrawler (class in westpa.cli.tools.w_crawl)

 	WESTPAH5File (class in westpa.cli.tools.w_assign)

 	(class in westpa.core.h5io)

 	WESTParallelTool (class in westpa.cli.tools.w_assign)

 	(class in westpa.cli.tools.w_crawl)

 	(class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_eddist)

 	(class in westpa.cli.tools.w_ipa)

 	(class in westpa.cli.tools.w_kinavg)

 	(class in westpa.cli.tools.w_kinetics)

 	(class in westpa.cli.tools.w_pdist)

 	(class in westpa.cli.tools.w_postanalysis_matrix)

 	(class in westpa.cli.tools.w_postanalysis_reweight)

 	(class in westpa.cli.tools.w_red)

 	(class in westpa.cli.tools.w_reweight)

 	(class in westpa.cli.tools.w_select)

 	(class in westpa.cli.tools.w_stateprobs)

 	(class in westpa.tools)

 	(class in westpa.tools.core)

 	WESTPropagator (class in westpa.core.propagators)

 	(class in westpa.core.propagators.executable)

 	WESTRC (class in westpa.core._rc)

 	WESTSubcommand (class in westpa.cli.tools.ploterr)

 	(class in westpa.cli.tools.plothist)

 	(class in westpa.tools)

 	(class in westpa.tools.core)

 	(class in westpa.tools.kinetics_tool)

 	WESTSystem (class in westpa.core.systems)

 	WESTTool (class in westpa.cli.tools.w_bins)

 	(class in westpa.cli.tools.w_dumpsegs)

 	(class in westpa.cli.tools.w_fluxanl)

 	(class in westpa.cli.tools.w_multi_west)

 	(class in westpa.cli.tools.w_ntop)

 	(class in westpa.cli.tools.w_trace)

 	(class in westpa.tools)

 	(class in westpa.tools.core)

 	WESTToolComponent (class in westpa.tools)

 	(class in westpa.tools.binning)

 	(class in westpa.tools.core)

 	(class in westpa.tools.data_reader)

 	(class in westpa.tools.iter_range)

 	(class in westpa.tools.progress)

 	(class in westpa.tools.selected_segs)

 	WESTTrajectory (class in westpa.core.h5io)

 	WESTWDSSynthesizer (class in westpa.cli.tools.w_pdist)

 	(class in westpa.tools)

 	(class in westpa.tools.data_reader)

 	WFluxanlTool (class in westpa.cli.tools.w_fluxanl)

 	which_expired() (westpa.work_managers.zeromq.core.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.node.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.work_manager.PassiveMultiTimer method)

 	(westpa.work_managers.zeromq.worker.PassiveMultiTimer method)

 	WIPI (class in westpa.cli.tools.w_ipa)

 	WIPI.Future (class in westpa.cli.tools.w_ipa)

 	WIPIDataset (class in westpa.cli.tools.w_ipa)

 	(class in westpa.tools)

 	(class in westpa.tools.wipi)

 	WIPIScheme (class in westpa.cli.tools.w_ipa)

 	(class in westpa.tools)

 	(class in westpa.tools.wipi)

 	WKinAvg (class in westpa.cli.tools.w_kinavg)

 	WKinetics (class in westpa.cli.tools.w_direct)

 	(class in westpa.cli.tools.w_kinetics)

 	(class in westpa.core.kinetics)

 	(class in westpa.core.kinetics.events)

 	WMEnvironment (class in westpa.work_managers.environment)

 	WMFuture (class in westpa.work_managers.core)

 	(class in westpa.work_managers.mpi)

 	(class in westpa.work_managers.processes)

 	(class in westpa.work_managers.serial)

 	(class in westpa.work_managers.threads)

 	(class in westpa.work_managers.zeromq.work_manager)

 	WMultiWest (class in westpa.cli.tools.w_multi_west)

 	WNTopTool (class in westpa.cli.tools.w_ntop)

 	work_manager (westpa.cli.tools.ploterr.WESTSubcommand property)

 	(westpa.cli.tools.plothist.WESTSubcommand property)

 	(westpa.tools.core.WESTSubcommand property)

 	(westpa.tools.kinetics_tool.WESTSubcommand property)

 	(westpa.tools.WESTSubcommand property)

 	Worker (class in westpa.work_managers.mpi)

 	WorkManager (class in westpa.work_managers.core)

 	(class in westpa.work_managers.mpi)

 	(class in westpa.work_managers.processes)

 	(class in westpa.work_managers.serial)

 	(class in westpa.work_managers.threads)

 	(class in westpa.work_managers.zeromq.work_manager)

 	WPDist (class in westpa.cli.tools.w_pdist)

 	WRed (class in westpa.cli.tools.w_red)

 	WReweight (class in westpa.cli.tools.w_postanalysis_matrix)

 	(class in westpa.cli.tools.w_postanalysis_reweight)

 	(class in westpa.cli.tools.w_reweight)

 	writable() (westpa.core.propagators.executable.BytesIO method)

 	write() (westpa.core.h5io.HDF5TrajectoryFile method)

 	(westpa.core.propagators.executable.BytesIO method)

 	(westpa.core.textio.NumericTextOutputFormatter method)

 	write_bin_info() (in module westpa.cli.tools.w_bins)

 	(in module westpa.tools.binning)

 	write_bin_labels() (in module westpa.tools.binning)

 	(westpa.oldtools.aframe.binning.BinningMixin method)

 	(westpa.oldtools.aframe.BinningMixin method)

 	write_comment() (westpa.core.textio.NumericTextOutputFormatter method)

 	write_data() (westpa.core.h5io.WESTIterationFile method)

 	write_header() (westpa.core.textio.NumericTextOutputFormatter method)

 	write_host_info() (westpa.work_managers.zeromq.core.IsNode method)

 	(westpa.work_managers.zeromq.node.IsNode method)

 	(westpa.work_managers.zeromq.work_manager.IsNode method)

 	write_segment() (westpa.core.h5io.WESTIterationFile method)

 	writelines() (westpa.core.propagators.executable.BytesIO method)

 	(westpa.core.textio.NumericTextOutputFormatter method)

 	WSelectTool (class in westpa.cli.tools.w_select)

 	WStateProbs (class in westpa.cli.tools.w_stateprobs)

 	WSucc (class in westpa.cli.core.w_succ)

 	WTraceTool (class in westpa.cli.tools.w_trace)

X

 	
 	xyz (westpa.core.h5io.Trajectory attribute)

 	(westpa.core.h5io.Trajectory property)

Y

 	
 	YAMLConfig (class in westpa.core.yamlcfg)

 	
 	YAMLSystem (class in westpa.core.yamlcfg)

 	YLoader (in module westpa.core.yamlcfg)

Z

 	
 	zip_longest (class in westpa.core.kinetics.rate_averaging)

 	(class in westpa.core.sim_manager)

 	ZMQCore (class in westpa.work_managers.zeromq)

 	(class in westpa.work_managers.zeromq.core)

 	(class in westpa.work_managers.zeromq.node)

 	(class in westpa.work_managers.zeromq.work_manager)

 	(class in westpa.work_managers.zeromq.worker)

 	ZMQExecutor (class in westpa.work_managers.zeromq.worker)

 	ZMQNode (class in westpa.work_managers.zeromq)

 	(class in westpa.work_managers.zeromq.node)

 	(class in westpa.work_managers.zeromq.work_manager)

 	
 	ZMQWMEnvironmentError, [1], [2]

 	ZMQWMError, [1]

 	ZMQWMTimeout, [1], [2]

 	ZMQWorker (class in westpa.work_managers.zeromq)

 	(class in westpa.work_managers.zeromq.work_manager)

 	(class in westpa.work_managers.zeromq.worker)

 	ZMQWorkerMissing, [1], [2]

 	ZMQWorkManager (class in westpa.work_managers.zeromq)

 	(class in westpa.work_managers.zeromq.work_manager)

WESTPA 2.0

Overview

WESTPA is a package for constructing and running stochastic simulations using the “weighted ensemble” approach
of Huber and Kim (1996). For use of WESTPA please cite the following:

Zwier, M.C., Adelman, J.L., Kaus, J.W., Pratt, A.J., Wong, K.F., Rego, N.B., Suarez, E., Lettieri, S.,
Wang, D.W., Grabe, M., Zuckerman, D.M., and Chong, L.T. “WESTPA: An Interoperable, Highly
Scalable Software Package For Weighted Ensemble Simulation and Analysis,” J. Chem. Theory Comput., 11: 800−809 (2015).

Russo, J. D., Zhang, S., Leung, J.M.G., Bogetti, A.T., Thompson, J.P., DeGrave, A.J., Torrillo, P.A., Pratt, A.J.,
Wong, K.F., Xia, J., Copperman, J., Adelman, J.L., Zwier, M.C., LeBard, D.N., Zuckerman, D.M., Chong, L.T.
WESTPA 2.0: High-Performance Upgrades for Weighted Ensemble Simulations and Analysis of Longer-Timescale Applications.
J. Chem. Theory Comput., 18 (2): 638–649 (2022).

See this page [https://westpa.github.io/westpa/overview.html] and this powerpoint [https://pitt.box.com/s/metui7tsfwh3bcv1xgbbj4g6fe0uokag] for an overview of weighted ensemble simulation.

To help us fund development and improve WESTPA please fill out a one-minute survey [https://docs.google.com/forms/d/e/1FAIpQLSfWaB2aryInU06cXrCyAFmhD_gPibgOfFk-dspLEsXuS9-RGQ/viewform] and consider
contributing documentation or code to the WESTPA community.

WESTPA is free software, licensed under the terms of the MIT License. See the file LICENSE for more information.

Requirements

WESTPA is written in Python and requires version 3.7 or later. WESTPA further
requires a large number of scientific software libraries for Python and other
languages. The simplest way to meet these requirements is to download the
Anaconda Python distribution from www.continuum.io (free for all users).

WESTPA currently runs on Unix-like operating systems, including Linux and
Mac OS X. It is developed and tested on x86_64 machines running Linux.

Obtaining and Installing WESTPA

WESTPA is developed and tested on Unix-like operating systems, including Linux and Mac OS X.

Regardless of the chosen method of installation, before installing WESTPA, we recommend you to first install the Python 3 version provided by the latest free Anaconda Python distribution [https://www.anaconda.com/products/individual]. After installing Anaconda, create a new python environment for the WESTPA install with the following:

conda create -n westpa-2.0 python=3.9
conda activate westpa-2.0

Then, we recommend installing WESTPA through conda or pip. Execute either of the following:

conda install -c conda-forge westpa

or:

python -m pip install westpa

See the install instructions on our wiki [https://github.com/westpa/westpa/wiki/WESTPA-Quick-Installation] for more detailed information.

To install from source (not recommended), start by downloading the corresponding tar.gz file from the releases page [https://github.com/westpa/westpa/releases]. After downloading the file, unpack the file and install WESTPA by executing the following:

tar xvzf westpa-main.tar.gz
cd westpa
python -m pip install -e .

Getting started

High-level tutorials of how to use the WESTPA software can be found here [https://github.com/westpa/westpa/wiki/Tutorials].
Further, all WESTPA command-line tools provide detailed help when
given the -h/–help option.

Finally, while WESTPA is a powerful tool that enables expert simulators to access much longer
timescales than is practical with standard simulations, there can be a steep learning curve to
figuring out how to effectively run the simulations on your computing resource of choice.
For serious users who have completed the online tutorials and are ready for production simulations
of their system, we invite you to contact Lillian Chong (ltchong AT pitt DOT edu) about spending
a few days with her lab and/or setting up video conferencing sessions to help you get your
simulations off the ground.

Getting help

WESTPA FAQ [https://westpa.github.io/westpa/users_guide/faq.html]

A mailing list for WESTPA is available, at which one can ask questions (or see
if a question one has was previously addressed). This is the preferred means
for obtaining help and support. See http://groups.google.com/group/westpa-users
to sign up or search archived messages.

Developers

Search archived messages or post to the westpa-devel Google group: https://groups.google.com/group/westpa-devel.

Copyright, license, and warranty information

For WESTPA

The WESTPA package is copyright (c) 2013, WESTPA Developers.

WESTPA is free software: you can redistribute it and/or modify
it under the terms of the MIT License.

WESTPA is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
‘LICENSE’ file for more details.

Unless otherwise noted, source files included in this distribution and
lacking a more specific attribution are subject to the above copyright,
terms, and conditions.

For included software

Distributions of WESTPA include a number of components without modification,
each of which is subject to its own individual terms and conditions. Please
see each package’s documentation for the most up-to-date possible information
on authorship and licensing. Such packages include:

	h5py
	See lib/h5py/docs/source/licenses.rst

	blessings
	See lib/blessings/LICENSE

In addition, the wwmgr work manager is derived from the
concurrent.futures module (as included in Python 3.2) by Brian Quinlan and
copyright 2011 the Python Software Foundation. See
http://docs.python.org/3/license.html for more information.

WESTPA 2.0

[image: GitHub Actions] [https://github.com/westpa/westpa/actions/workflows/test.yaml] [image: Anaconda] [https://anaconda.org/conda-forge/westpa] [image: WESTPA Tutorials GitHub] [https://github.com/westpa/tutorials]

[image: Documentation Status] [https://westpa.readthedocs.io/en/latest/?badge=latest] [image: Users Google Group] [http://groups.google.com/group/westpa-users] [image: Developers Google Group] [https://groups.google.com/g/westpa-devel]

Overview

WESTPA is a package for constructing and running stochastic simulations using the “weighted ensemble” approach
of Huber and Kim (1996). For use of WESTPA please cite the following:

Zwier, M.C., Adelman, J.L., Kaus, J.W., Pratt, A.J., Wong, K.F., Rego, N.B., Suarez, E., Lettieri, S.,
Wang, D.W., Grabe, M., Zuckerman, D.M., and Chong, L.T. “WESTPA: An Interoperable, Highly
Scalable Software Package For Weighted Ensemble Simulation and Analysis,” J. Chem. Theory Comput., 11: 800−809 (2015).

Russo, J. D., Zhang, S., Leung, J.M.G., Bogetti, A.T., Thompson, J.P., DeGrave, A.J., Torrillo, P.A., Pratt, A.J.,
Wong, K.F., Xia, J., Copperman, J., Adelman, J.L., Zwier, M.C., LeBard, D.N., Zuckerman, D.M., Chong, L.T.
WESTPA 2.0: High-Performance Upgrades for Weighted Ensemble Simulations and Analysis of Longer-Timescale Applications.
J. Chem. Theory Comput., 18 (2): 638–649 (2022).

See this page [https://westpa.github.io/westpa/overview.html] and this powerpoint [https://docs.google.com/presentation/d/1PKsklN5aYLlLSTDOLdNGti6pcGs4Rgxm/edit?usp=sharing&ouid=117278498028744119802&rtpof=true&sd=true] for an overview of weighted ensemble simulation.

To help us fund development and improve WESTPA please fill out a one-minute survey [https://docs.google.com/forms/d/e/1FAIpQLSfWaB2aryInU06cXrCyAFmhD_gPibgOfFk-dspLEsXuS9-RGQ/viewform] and consider
contributing documentation or code to the WESTPA community.

WESTPA is free software, licensed under the terms of the MIT License. See the file LICENSE for more information.

Requirements

WESTPA is written in Python and requires version 3.7 or later. WESTPA also requires a number of Python scientific software packages.
The simplest way to meet these requirements is to download the
Anaconda Python distribution from www.anaconda.com (free for all users).

WESTPA currently runs on Unix-like operating systems, including Linux and
Mac OS X. It is developed and tested on x86_64 machines running Linux.

Obtaining and Installing WESTPA

WESTPA is developed and tested on Unix-like operating systems, including Linux and Mac OS X.

Regardless of the chosen method of installation, before installing WESTPA, we recommend you to first install the Python 3 version provided by the latest free Anaconda Python distribution [https://www.anaconda.com/products/individual]. After installing Anaconda, create a new python environment for the WESTPA install with the following:

conda create -n westpa-2.0 python=3.9
conda activate westpa-2.0

Then, we recommend installing WESTPA through conda or pip. Execute either of the following:

conda install -c conda-forge westpa

or:

python -m pip install westpa

See the install instructions on our wiki [https://github.com/westpa/westpa/wiki/Installing-WESTPA] for more detailed information.

To install from source (not recommended), start by downloading the corresponding tar.gz file from the releases page [https://github.com/westpa/westpa/releases]. After downloading the file, unpack the file and install WESTPA by executing the following:

tar xvzf westpa-main.tar.gz
cd westpa
python -m pip install -e .

Getting started

High-level tutorials of how to use the WESTPA software can be found here [https://github.com/westpa/westpa/wiki/Tutorials].
Further, all WESTPA command-line tools provide detailed help when
given the -h/–help option.

Finally, while WESTPA is a powerful tool that enables expert simulators to access much longer
timescales than is practical with standard simulations, there can be a steep learning curve to
figuring out how to effectively run the simulations on your computing resource of choice.
For serious users who have completed the online tutorials and are ready for production simulations
of their system, we invite you to contact Lillian Chong (ltchong AT pitt DOT edu) about spending
a few days with her lab and/or setting up video conferencing sessions to help you get your
simulations off the ground.

Getting help

WESTPA FAQ [https://github.com/westpa/westpa/wiki/Frequently-Asked-Questions]

A mailing list for WESTPA is available, at which one can ask questions (or see
if a question one has was previously addressed). This is the preferred means
for obtaining help and support. See http://groups.google.com/group/westpa-users
to sign up or search archived messages.

Developers

Search archived messages or post to the westpa-devel Google group: https://groups.google.com/group/westpa-devel.

 _static/chig_flux1.png
)

Instantaneous Flux

0040

0035

0030

0025

0020

0015

0010

0,005

0000

29

292

2
teration

EQ

2%

300

_static/chig_flux2.png
0040

0035

0030

0025

0020

Mean Flux

0015

0010

0,005

0000

20 29 ED EQ 2% 300
teration

_static/chig_minmax.png
10
Total Time(ns)

15

_static/file.png

_static/minus.png

_static/nacl_amber_flux_evolution.png
0,006

0,005

0.004

0,003

2

0,002

0,001

0,000
(] 20 0 EJ 80 100
Iteration

nav.xhtml

 Table of Contents

 		
 WESTPA 2.0

_static/nacl_gromacs_flux_instantaneous.png
0,025

0,020

0015

0,010

£
H

0,005

0,000
o 20 0 EJ 80 100

Iteration

_static/nacl_namd_flux_evolution.png
0,010

0,008

Mean Flux

0.004

0,002

0,000
(]

0

Iteration

EJ

100

_static/nacl_amber_flux_instantaneous.png
)

Instantaneous Flux

0,008

0.007

0,006

0,005

0.004

0,003

0,002

0,001

0,000
(]

20

0

Iteration

EJ

80

100

_static/nacl_gromacs_flux_evolution.png
0,025

0,020

Mean Flux

0,010

0,005

0,000
(]

20

0

Iteration

EJ

80

100

_static/nacl_namd_flux_instantaneous.png
)

Instantaneous Flux

0,035

0,030

0,025

0,020

0015

0,010

0,005

0,000
(]

20

0

Iteration

EJ

80

100

_static/plus.png

